Abstract:
A SW (70) receives an Ethernet® signal from an outside of areas E and F. The SW (70) selects and outputs the obtained Ethernet® signal to any one of APs (91a to 91e) in accordance with a network structure managed by the SW (70). The AP (91a to 91e) converts the Ethernet® signal to an electrical signal type wireless LAN signal, which is in turn output to a main station (10). The main station (10) frequency-multiplexes the signal output from each of the APs (91a to 91e), and converts the signal to an optical signal, which is in turn output to sub-stations (20a and 20b) The sub-station (20a and 20b) transmits the signal transmitted from the main station (10) to a terminal in the form of a wireless radio wave. Thereby, when a plurality of communication areas are present, the accommodation capacity of an AP can be effectively utilized in each communication area.
Abstract:
A branch portion 107 branches a modulating signal into two signals in opposite phases. One of them is inputted to an FM laser element 102. The other one is adjusted in propagation delay and in amplitude and then is inputted to an IM suppressing laser element 110. The FM laser element 102 outputs an optical-frequency-modulated signal around a wavelength .lambda.1, whose optical intensity is also modulated. A local light source 104 outputs light at a wavelength .lambda.0, which is different from the oscillation wavelength .lambda.1 of the FM laser element 102 by .DELTA..lambda.. The IM suppressing laser element 110 outputs an optical-intensity-modulated signal. The three lights are combined and inputted to a photodetection portion 106. The photodetection portion 106 applies a heterodyne detection to inputted lights to output an FM modulated signal corresponding to a beat signal of the outputted optical signal from the FM laser element 102 and the outputted light from the local light source 104 at frequency corresponding to the difference .DELTA..lambda. between the original two wavelengths, and also cancels the average-value variation component in the FM modulated signal with an electrical signal produced by square-law detecting the optical-intensity-modulated signal from the IM suppressing laser element 110, thereby producing an ideal FM modulated signal.
Abstract:
A pay-channel transmission system for a CATV has an optical transmission unit and an optical receiver unit. The optical transmission unit includes pay-channel television signals optically multiplexed by a .lambda..sub.1 wavelength semiconductor laser and non-pay-channel television signals optically multiplexed by a .lambda..sub.2 wavelength semiconductor laser. The optical receiver unit includes an optical filter for filtering the .lambda..sub.1 wavelength data. Thus, a non-subscriber having the optical filter is prevented from receiving the pay-channel television signals, and a subscriber having no optical filter is able to receive both the pay-channel television signals and non-pay-channel television signals.
Abstract:
A wireless communication system capable of keeping a level of a wireless signal received by a relay apparatus within a predetermined dynamic range. In a control apparatus, a transmitting section converts a downstream electric signal into a downstream optical signal and transmits the downstream optical signal to the relay apparatus via an optical transmission path. The relay apparatus converts the received downstream optical signal into a downstream electric signal and transmits the downstream electric signal as a wireless signal to a wireless communication terminal from a transmitting/receiving antenna section. In the relay apparatus, a level adjustment section adjusts the level of the wireless signal transmitted by the relay apparatus such that the receiving level of the wireless signal received by the relay apparatus is kept within a predetermined range.
Abstract:
This invention discloses an optical burst transmission system in which an optical generator generates Type 1 lightwaves having different wavelengths corresponding to transmission lines and having undergone intensity modulation with obtained data; a broad spectrum optical generator generates, by incorporating Type 2 lightwaves, a Type 3 lightwave using a fewer light emitting devices than the number of the Type 1 lightwaves, each Type 2 lightwaves having a corresponding wavelength apart from Type 1 lightwave's wavelength with an FSR interval and having undergone the intensity modulation with clock signals; an optical multiplexer multiplexes the Type 1 and Type 3 lightwaves to output the combination to each transmission line; and an optical routing unit extracts, from the combination, pairs of one Type 1 lightwave and one Type 2 lightwave having the corresponding wavelength, and guides pairs to each transmission line corresponding to the Type 1 lightwave's wavelength in each pair.
Abstract:
A branch portion 101 branches an inputted electrical signal into an in-phase signal and an opposite phase signal which have an opposite relation as to a phase. A first FM laser 104 converts the in-phase signal into an optical frequency-modulated signal (a first optical signal) having a center wavelength &lgr;1 and then outputs the resultant signal. A second FM laser 105 converts the opposite phase signal into an optical frequency-modulated signal (a second signal) having a center wavelength &lgr;2 and then outputs the resultant signal. The two optical signals are combined and then inputted into an optical-electrical converting portion 106. The optical-electrical converting portion 106 subjects the inputted optical signals to optical heterodyne detection by its square-law detection characteristic, and outputs a beat signal between the two optical signals which is a wide-band FM signal at a frequency corresponding to a wavelength difference &Dgr;&lgr;(=|&lgr;1−&lgr;2|) between the first optical signal and the second optical signal. It is thus possible to increase frequency deviation of the outputted FM signal and thus greatly improve a CNR.
Abstract:
A center station 1 generates an all-channel signal 2 obtained by multiplexing signals on all channels, and transmits the signals to a selective distribution station 10 through 1 wire transmission line such as an optical fiber. Subscribers' transmitting devices 40.sub.1 to 40.sub.N transmit requests for channels to be received by corresponding subscribers' receiving devices 30.sub.1 to 30.sub.N to the selective distribution station 10 in a radio transmission system. The selective distribution station 10 selects the signals on the channels requested from the all-channel signal 2 in response to requests to receive channels serving as up-signals transmitted in a radio transmission system from the subscribers' transmitting devices 40.sub.1 to 40.sub.N, and distributes and transmits the selected signals to the subscribers' receiving devices 30.sub.1 to 30.sub.N as down-signals.
Abstract:
A signal for which the amplitude of envelope becomes substantially 0 only for a certain period of time within the time of a period T, and a measured signal having a certain amplitude are synthesized, and the synthesized signal is optically transmitted. When a plurality of reflection points are present on a light transmission line, there is an increase in harmonic distortion or intermodulation distortion as well as in cross modulation distortion after receiving. This increase in cross modulation distortion causes an increase in variation of amplitude of the measured signal. In such a case, it is possible to calculate the distance between, and/or reflectance of, reflection points present on end faces of optical elements and/or connecting points of optical fibers on the light transmission line by investigating first periodical characteristics of variation of the transmitted measured signal during transmission relative to the change in central light frequency of the signal light, or investigating second periodical characteristics of variation of the transmitted measured signal during transmission corresponding to the change in the frequency of the measured signal.
Abstract:
A SW (70) receives an Ethernet® signal from an outside of areas E and F. The SW (70) selects and outputs the obtained Ethernet® signal to any one of APs (91a to 91e) in accordance with a network structure managed by the SW (70). The AP (91a to 91e) converts the Ethernet® signal to an electrical signal type wireless LAN signal, which is in turn output to a main station (10). The main station (10) frequency-multiplexes the signal output from each of the APs (91a to 91e), and converts the signal to an optical signal, which is in turn output to sub-stations (20a and 20b). The sub-station (20a and 20b) transmits the signal transmitted from the main station (10) to a terminal in the form of a wireless radio wave. Thereby, when a plurality of communication areas are present, the accommodation capacity of an AP can be effectively utilized in each communication area.
Abstract:
An optical fiber radio transmission system is provided which is capable of considerably improving the received dynamic range of radio signals and, in addition, is capable of optically transmitting radio signals while preventing the deterioration of transmission performance and the loss of linearity of an input signal more easily. A received level detection section 111 detects which one of predetermined levels, i.e., Level I, Level II, and Level III, the received level of a radio signal received by an antenna 400 falls under. A signal control section 112 performs an amplification/attenuation process on the radio signal in accordance with the detected level. A control information sending section 113 superimposes control information indicating the detected level on a primary signal obtained after the amplification/attenuation process. This signal is converted to an optical signal and transmitted. An optical to electrical conversion section 211 converts the optical signal received from a transmitting unit to an electrical signal. A control information extraction section 212 extracts the level from the control information, which has been superimposed on the primary signal. A signal control section 213 performs an amplification/attenuation process on the primary signal in accordance with the extracted level.