Abstract:
Disclosed is a star network/mesh network accessing method and apparatus of a terminal in a satellite communication system, the method including receiving time slot resources from a central station and operating in a time division multiple access (TDMA) start network communication mode between the central station and a terminal, transferring, to the central station, a TDMA mesh network connection request message for a destination terminal, receiving traffic burst time plan (TBTP) information corresponding to the TDMA mesh network connection request message from the central station and operating in a TDMA mesh network communication mode between terminals, and switching from the TDMA mesh network communication mode between the terminals to a single channel per carrier (SCPC) mesh network communication mode between the terminals when Voice over Internet Protocol (VoIP) traffic is greater than a threshold.
Abstract:
An LNB downconverter comprising: two LNBs configured to receive their respective satellite signals: the first and second LNB being configured to output, four IF signals of different polarization and frequency range to a respective first and second Cross-bar Switch (CBS); wherein the first and second CBS, are configured to accept four RF inputs, and routing them, to any of four outputs, as configured by a Controller: wherein outputs of CBSs are connected to respective Satellite Channel Routers (SCRs) configured by the Controller to shift the frequency of their input signals to fixed intermediate frequencies; wherein outputs of SCRs are connected to respective Band Pass Filters (BPFs) whereas the fixed intermediate frequencies of SCRs are different and wherein the band passed by each BPF is non-overlapping; an Adder adding the signals on different frequencies, output by each BPF, to form a single output signal comprising data from both satellite signals.
Abstract:
An LNB downconverter comprising: two LNBs configured to receive their respective satellite signals: the first and second LNB being configured to output, four IF signals of different polarization and frequency range to a respective first and second Cross-bar Switch (CBS); wherein the first and second CBS, are configured to accept four RF inputs, and routing them, to any of four outputs, as configured by a Controller: wherein outputs of CBSs are connected to respective Satellite Channel Routers (SCRs) configured by the Controller to shift the frequency of their input signals to fixed intermediate frequencies; wherein outputs of SCRs are connected to respective Band Pass Filters (BPFs) whereas the fixed intermediate frequencies of SCRs are different and wherein the band passed by each BPF is non-overlapping; an Adder adding the signals on different frequencies, output by each BPF, to form a single output signal comprising data from both satellite signals.
Abstract:
A method for a wireless mesh network is provided. The wireless mesh network comprises a first node and a second node. The method comprises the step of: broadcasting a packet by the first node, wherein the packet comprises an indicator of time to live (TTL) and an initial TTL. The second node receives the packet, wherein the received packet includes an adjusted TTL and the initial TTL. The second node then determines a new TTL by the second node according to the adjusted TTL and the initial TTL.
Abstract:
An apparatus for processing a hybrid broadcast service, the apparatus comprising a reception module for receiving broadcast signals though a broadcast channel or contents through a broadband channel for the hybrid broadcast service, wherein the broadcast signals include data for the hybrid broadcast service and an EAM (Emergency Alert message) and a processor for receiving a request from a companion device and sending at least one of a content or continuous components or files or data or media or the data are a part of the hybrid broadcast service which is currently selected.
Abstract:
Methods, systems and devices for locating a wireless identity transmitter with a central server connected with one or more proximity broadcast receivers, such as stationary receivers or mobile devices operating as wireless receivers. The wireless identity transmitter may be a compact device configured to broadcast messages, such as through Bluetooth® advertisements, including an identification code. When within proximity, a proximity broadcast receiver may receive broadcast messages from the wireless identity transmitter and relay location information along with the wireless identity transmitter's identification code to a central server as sighting messages. The proximity broadcast receiver's own location may provide an approximate location for the wireless identity transmitter. The central server may process sighting messages, which may include signal strength information, to accurately locate the wireless identity transmitter. The central server may transmit data to third-party devices and/or mobile devices of users in response to receiving sightings messages.
Abstract:
A method and apparatus is provided for the delivery of digital television and interactive broadband service in a manner that maximizes the usage of the digital broadcast spectrum. A digital television signal is transmitted to a given broadcast area in a relatively small part (for example, a 1 MHz band) of one or more licensed portions of the digital broadcast spectrum. Interactive broadband service is delivered within at least a portion of the same broadcast area covered by the broadcast digital television signal, in the remainder (for example, a 5 MHz band) of an unused part of the same licensed portion of the digital broadcast spectrum as is occupied by the digital television signal, or within an unlicensed (unused) portion of the digital broadcast spectrum. The broadcasting of the digital television and delivery the interactive broadband service occur simultaneously. In one embodiment, digital television and broadband service are delivered by the same equipment within the same bandwidth.
Abstract:
Portable fitness monitoring methods are disclosed. In an embodiment, a portable fitness monitoring method includes a method for providing audible output to a user during an athletic activity using a portable fitness monitoring device. The method includes the steps of receiving an audio feedback file package that includes a first audio feedback file, updating the audio feedback file package, and processing the updated audio feedback file package to provide audible output to the user through an audio output device during the athletic activity.
Abstract:
A personal media device including a broadcast receiver that receives broadcast media and broadcast media data from a broadcast source where the broadcast media data includes a media identifier associated with the broadcast media. The media device also includes a data transceiver that sends a retrieval request to a media server for enhanced media data where the retrieval request includes the media identifier and receives the enhanced media data via a wireless data channel. The media device further includes a processor that performs a media device operation in response to the received enhanced media data.
Abstract:
A radio broadcast playback method and apparatus is provided. The radio broadcast playback method includes playing a radio broadcast received by a tuner, receiving a channel search request, through an input unit, searching for radio channels by a communication module, while playing the radio broadcast received by the tuner, and outputting the found radio channels.