摘要:
A method of removing materials, and preferably photoresist, from a substrate comprises dispensing a liquid sulfuric acid composition comprising sulfuric acid and/or its desiccating species and precursors and having a water/sulfuric acid molar ratio of no greater than 5:1 onto an material coated substrate in an amount effective to substantially uniformly coat the material coated substrate. The substrate is preferably heated to a temperature of at least about 90° C., either before, during or after dispensing of the liquid sulfuric acid composition. After the substrate is at a temperature of at least about 90° C., the liquid sulfuric acid composition is exposed to water vapor in an amount effective to increase the temperature of the liquid sulfuric acid composition above the temperature of the liquid sulfuric acid composition prior to exposure to the water vapor. The substrate is then preferably rinsed to remove the material.
摘要:
A method of removing materials, and preferably photoresist, from a substrate comprises dispensing a liquid sulfuric acid composition comprising sulfuric acid and/or its desiccating species and precursors and having a water/sulfuric acid molar ratio of no greater than 5:1 onto an material coated substrate in an amount effective to substantially uniformly coat the material coated substrate. The substrate is preferably heated to a temperature of at least about 90° C., either before, during or after dispensing of the liquid sulfuric acid composition. After the substrate is at a temperature of at least about 90° C., the liquid sulfuric acid composition is exposed to water vapor in an amount effective to increase the temperature of the liquid sulfuric acid composition above the temperature of the liquid sulfuric acid composition prior to exposure to the water vapor. The substrate is then preferably rinsed to remove the material.
摘要:
A method of removing materials, and preferably photoresist, from a substrate comprises dispensing a liquid sulfuric acid composition comprising sulfuric acid and/or its desiccating species and precursors and having a water/sulfuric acid molar ratio of no greater than 5:1 onto an material coated substrate in an amount effective to substantially uniformly coat the material coated substrate. The substrate is preferably heated to a temperature of at least about 90° C., either before, during or after dispensing of the liquid sulfuric acid composition. After the substrate is at a temperature of at least about 90° C., the liquid sulfuric acid composition is exposed to water vapor in an amount effective to increase the temperature of the liquid sulfuric acid composition above the temperature of the liquid sulfuric acid composition prior to exposure to the water vapor. The substrate is then preferably rinsed to remove the material.
摘要:
Improved methods of rinsing and drying microelectronic devices by way of an immersion processing apparatus are provided for effectively cleaning microelectronic devices. Methods and arrangements control the separation of one or more microelectronic devices from a liquid environment as part of a replacement of the liquid environment with a gas environment. Cleaning enhancement substance, such as IPA, is introduced into the gas environment according to a controlled profile while the separation step is conducted. The controlled profile being directed to the timing of introduction of cleaning enhancement substance, the concentration of cleaning enhancement substance and/or flow rates thereof into the vessel. Controlled timing of gas and cleaning enhancement substance delivery can also improve effectiveness of separation. Methods and arrangements are also provided for controlling a drying step to be conducted on the one or more microelectronic devices after they have been separated from a liquid environment by replacing the liquid environment with a gas environment. Preferably, an arrangement of gas distribution devices create one or more drying gas curtains, which gas curtains may be controllably directed with respect to a set of microelectronic devices to provide optimal drying of the microelectronic devices after being separating from a liquid.
摘要:
A solid-block homodyne Doppler interferometer utilizing continuous-wave or pulse-wave light beam technology. A pulse-wave light beam version of the homodyne interferometer compares the pulse-wave return signal with a continuous-wave local oscillator signal, thereby permitting the interferometer to be utilized over a wide range of distances.
摘要:
An apparatus having a processing chamber for processing a semiconductor wafer under evacuated conditions that is capable of transfer of the wafer from the processing chamber under conditions that are substantially equal to the pressure of an adjacent environment. In a preferred embodiment, the processing chamber is pressurized and vented with a source of high purity dry gas that is diffused into the chamber through a diffuser to pressurize the processing chamber after processing of the wafer is completed. A chamber equalization port between the processing chamber and the adjacent environment is opened to maintain the pressure within the chamber at or slightly above the pressure of the adjacent environment, and the chamber valve is then opened. The wafer can then be removed from the processing chamber, and a new wafer can be inserted. The chamber is then sealed by closing the chamber valve and the equalization port, and the atmosphere within the processing chamber is evacuated to a desired level. The new wafer is then processed, and the above steps are repeated to remove the wafer once processing has finished.
摘要:
An aerosol cleaning apparatus and a method of treating a substrate within such an apparatus prevent contaminant recirculation by controlling the post-impingement exhaust flow through control of the aerodynamic behavior of the contaminant laden exhaust stream. By the present invention, the post-impingement exhaust flow is divided into two streams. A first stream is the main stream flowing initially over the contaminated side of the wafer and carrying most of the suspended contaminants into the exhaust. The second stream flows initially over the cleaned side of the wafer and eventually into the exhaust stream. A flow separator is provided for dividing the post-impingement aerosol spray into plural flow streams. Additionally, the aerosol chamber can advantageously include a shroud positioned within the aerosol chamber just to the side of the nozzle but further away from the exhaust than the nozzle for restricting flow from the second post-impingement stream around the nozzle and into the first post-impingement stream. In accordance with a preferred embodiment, the apparatus is designed for cleaning the surface of a semiconductor wafer by impinging the surface with a cryogenic aerosol spray.
摘要:
The present invention provides methods and apparatuses for controlling the transition between first and second treatment fluids during processing of microelectronic devices using spray processor tools
摘要:
A microelectronic substrate handling device comprising first and second support structures spaced from each other, the first support structure having a series of upper teeth defining a series of upper notches extending along a length of the first support structure and a series of lower teeth defining a series of lower notches extending along a length of the first support structure, each of the upper and lower notches opening toward the second support structure, wherein the upper and lower notches are offset from each other by a predetermined offset distance so that an edge of a microelectronic device will fit differently within the upper and lower notches of the first support structure when supported between the first and second support structures.
摘要:
A process for etching high dielectric constant (high-k) films (e.g., ZrzSiyOx, HfzSiyOx, ZrzHfyOx, HfzAlyOx, and ZrzAlyOx) more rapidly than coexisting SiO2, polysilicon, silicon and/or other films is disclosed. The process comprises contacting the films with an aqueous solution comprising a fluoride containing species at a concentration sufficiently dilute to achieve a desired selective etch of the high-k film. The etching solution is preferably used above ambient temperature to further increase the etch selectivity of the high-k films relative to coexisting SiO2 and/or other films. The etch rate of the solution can also be adjusted by controlling the pH of the etching solution, e.g., by the addition of other acids or bases to the solution (for example, HCl or NH4OH).