摘要:
A siloxane polymer composition includes an organic solvent in an amount of about 93 percent by weight to about 98 percent by weight, based on a total weight of the siloxane polymer composition, and a siloxane complex in an amount of about 2 percent by weight to about 7 percent by weight, based on the total weight of the siloxane polymer composition, the siloxane complex including a siloxane polymer with an introduced carboxylic acid and being represented by Formula 1 below, wherein each of R1, R2 R3, and R4 independently represents H, OH, CH3, C2H5, C3H7, C4H9 or C5H11, R′ represents CH2, C2H4, C3H6, C4H8, C5H10 or C6H12, and n represents a positive integer so the siloxane polymer of the siloxane complex has a number average molecular weight of about 4,000 to about 5,000.
摘要:
A siloxane polymer composition includes an organic solvent in an amount of about 93 percent by weight to about 98 percent by weight, based on a total weight of the siloxane polymer composition, and a siloxane complex in an amount of about 2 percent by weight to about 7 percent by weight, based on the total weight of the siloxane polymer composition, the siloxane complex including a siloxane polymer with an introduced carboxylic acid and being represented by Formula 1 below, wherein each of R1, R2 R3, and R4 independently represents H, OH, CH3, C2H5, C3H7, C4H9 or C5H11, R′ represents CH2, C2H4, C3H6, C4H8, C5H10 or C6H12, and n represents a positive integer so the siloxane polymer of the siloxane complex has a number average molecular weight of about 4,000 to about 5,000.
摘要:
There are provided a method of forming a fine pattern employing self-aligned double patterning. The method includes providing a substrate. First mask patterns are formed on the substrate. A reactive layer is formed on the substrate having the first mask patterns. The reactive layer adjacent to the first mask patterns is reacted using a chemical attachment process, thereby forming sacrificial layers along outer walls of the first mask patterns. The reactive layer that is not reacted is removed to expose the sacrificial layers. Second mask patterns are formed between the sacrificial layers adjacent to sidewalls of the first mask patterns facing each other. The sacrificial layers are removed to expose the first and second mask patterns and the substrate exposed between the first and second mask patterns. The substrate is etched using the first and second mask patterns as an etching mask.
摘要:
A siloxane polymer composition includes an organic solvent in an amount of about 93 percent by weight to about 98 percent by weight, based on a total weight of the siloxane polymer composition, and a siloxane complex in an amount of about 2 percent by weight to about 7 percent by weight, based on the total weight of the siloxane polymer composition, the siloxane complex including a siloxane polymer with an introduced carboxylic acid and being represented by Formula 1 below, wherein each of R1, R2 R3, and R4 independently represents H, OH, CH3, C2H5, C3H7, C4H9 or C5H11, R′ represents CH2, C2H4, C3H6, C4H8, C5H10 or C6H12, and n represents a positive integer so the siloxane polymer of the siloxane complex has a number average molecular weight of about 4,000 to about 5,000.
摘要:
A siloxane polymer composition includes an organic solvent in an amount of about 93 percent by weight to about 98 percent by weight, based on a total weight of the siloxane polymer composition, and a siloxane complex in an amount of about 2 percent by weight to about 7 percent by weight, based on the total weight of the siloxane polymer composition, the siloxane complex including a siloxane polymer with an introduced carboxylic acid and being represented by Formula 1 below, wherein each of R1, R2 R3, and R4 independently represents H, OH, CH3, C2H5, C3H7, C4H9 or C5H11, R′ represents CH2, C2H4, C3H6, C4H8, C5H10 or C6H12, and n represents a positive integer so the siloxane polymer of the siloxane complex has a number average molecular weight of about 4,000 to about 5,000.
摘要:
Methods of forming a photoresist pattern include forming a first photoresist pattern on a substrate and treating the first photoresist pattern with plasma that modifies etching characteristics of the first photoresist pattern. This modification may include making the first photoresist pattern more susceptible to removal during subsequent processing. The plasma-treated first photoresist pattern is covered with a second photoresist layer, which is patterned into a second photoresist pattern that contacts sidewalls of the plasma-treated first photoresist pattern. The plasma-treated first photoresist pattern is selectively removed from the substrate to reveal the remaining second photoresist pattern. The second photoresist pattern is used as an etching mask during the selective etching of a portion of the substrate (e.g., target layer). The use of the second photoresist pattern as an etching mask may yield narrower linewidths in the etched portion of the substrate than are achievable using the first photoresist pattern alone.
摘要:
A method of manufacturing a semiconductor device using a photolithography process may include forming an anti-reflective layer and a first photoresist film on a lower surface. The first photoresist film may be exposed to light and a first photoresist pattern having a first opening may be formed by developing the first photoresist film. A plasma treatment can be performed on the first photoresist pattern and a second photoresist film may be formed on the first photoresist pattern, which may be exposed to light. A second photoresist pattern may be formed to have a second opening by developing the second photoresist film. Here, the second opening may be substantially narrower than the first opening.
摘要:
A method of inspecting a substrate includes measuring a first current flowing between a first region and a second region of the substrate using a first probe. A second current flowing between the first region and the second region of the substrate may be measured using a second probe including a material different from that of the first probe. By comparing the first and second currents, it can be determined whether there is a change in a physical composition of the substrate and a change in a physical configuration of the substrate between the first region and the second region. Thus, when the current change is induced by the change in a physical configuration of the substrate, a determination error that the contaminants on the semiconductor substrate may exist based on the current change may be prevented.