摘要:
The present invention relates to a bismuth molybdate-based composite oxide catalyst having a microporous zeolite coating layer on the surface thereof and thus having high selectivity for 1,3-butadiene, a method of preparing the same, and a method of preparing 1,3-butadiene using the same. The catalyst has a microporous zeolite coating layer, and thus enables only gaseous products (light) to selectively pass through the zeolite coating layer, improving selectivity for 1,3-butadiene.
摘要:
Disclosed is a multi-component bismuth molybdate catalyst for production of butadiene which comprises bismuth, molybdenum and at least one metal having a monovalent, divalent or trivalent cation, and further comprises cesium and potassium and thus has advantages of improving conversion ratio, yield and selectivity of butadiene and of providing stability of process operation.
摘要:
Disclosed is a method for regenerating a hydrogenation catalyst. More specifically, disclosed is a method for regenerating a hydrogenation catalyst poisoned during hydrogenation of a hydroformylation product for preparation of alcohol by stopping hydrogenation in a hydrogenation stationary phase reactor in which the hydrogenation catalyst is set and flowing hydrogen gas under a high temperature normal pressure. The method has an effect in that the poisoned hydrogenation catalyst can be efficiently recovered through a simple process.
摘要:
The present disclosure provides a thermoplastic copolymer composition capable of improving low noise properties without deterioration in mechanical properties, which is used in manufacture of a molded article, such as a constant velocity joint boot used as a component of an automobile. The composition includes a polyester elastomer; additives including silica and a siloxane-based polymer represented by Chemical Formula 1; and polytetramethylene glycol, where the additives are included in an amount of 1 to 4 parts by weight based on 100 parts by weight of the polyester elastomer
摘要:
Disclosed are a catalyst composition for oxidative dehydrogenation and a method of preparing the same. More particularly, disclosed is a catalyst composition comprising a multi-ingredient-based metal oxide catalyst and a mixed metal hydroxide. The catalyst composition and the method of preparing the same according to the present disclosure may prevent loss occurring in a filling process due to superior mechanical durability and wear according to long-term use, may inhibit polymer formation and carbon deposition during reaction, and may provide a superior conversion rate and superior selectivity.