Abstract:
The present invention relates to a supported catalyst that can be used to produce a carbon nanotube aggregate with high bulk density, a method for preparing the supported catalyst, a carbon nanotube aggregate produced using the supported catalyst, and a method for producing the carbon nanotube aggregate. According to the present invention, the bulk density of the carbon nanotube aggregate is easily controllable. Therefore, the carbon nanotube aggregate is suitable for use in various fields.
Abstract:
The carbon nanotubes according to the present invention can provide higher conductivity by allowing the BET and crystal size to satisfy the conditions expressed by formula 1 below, and consequently, can improve the conductivity of a carbon composite material containing the carbon nanotubes. Lc×[Specific surface area of CNT (cm2/g)]1/2>80 [Formula 1] wherein, Lc is crystal size measured by X-ray diffraction.
Abstract:
The carbon nanotube pellets according to the present invention are produced by using only a small amount of solvent and have increased apparent density. The present invention can improve the problems of the change of the content generated by scattering of powders and safety issues by using carbon nanotubes in the form of pellet rather than carbon nanotubes in the form of powder in composite materials. And since the density of the pellet form is higher than that of the powder form, transport, transfer and improvement become easier. Therefore, it can be more effectively applied to the manufacturing of composite materials.
Abstract:
The apparatus for manufacturing carbon nanotube pellets according to the present invention provides carbon nanotube pellets with increased apparent density by using only a small amount of solvent. The carbon nanotube pellets produced by the apparatus according to the present invention can improve various problems generated by scattering of powders. And since the density of the pellet form is high, transport, transfer and improvement become easier. Therefore, it can be more effectively applied to the manufacturing of composite materials.
Abstract:
The present invention relates to a method for producing large-diameter, low-density carbon nanotubes. The method uses a catalyst containing spherical α-alumina that is capable of controlling the growth of carbon nanotubes without deteriorating the quality of the carbon nanotubes. The use of the catalyst makes the carbon nanotubes highly dispersible.
Abstract:
Provided is a method for preparing a supported catalyst that enables the production of carbon nanotubes having a large specific surface area in high yield. Carbon nanotubes produced using the supported catalyst are also provided. The carbon nanotubes are suitable for use in various applications due to their large specific surface area and high yield.
Abstract:
Provided is a method for preparing a supported catalyst that enables the production of carbon nanotubes having a large specific surface area in high yield. Carbon nanotubes produced using the supported catalyst are also provided. The carbon nanotubes are suitable for use in various applications due to their large specific surface area and high yield.
Abstract:
The present invention relates to a method for producing large-diameter, low-density carbon nanotubes. The method uses a catalyst containing spherical α-alumina that is capable of controlling the growth of carbon nanotubes without deteriorating the quality of the carbon nanotubes. The use of the catalyst makes the carbon nanotubes highly dispersible.
Abstract:
The present disclosure relates to a carbon nanotube dispersion including carbon nanotubes, a dispersion medium, and partially hydrogenated nitrile rubber having a residual double bond (RDB) value of 0.5% by weight to 40% by weight calculated according to Mathematical Formula 1, a method for preparing the same, and methods for preparing electrode slurry and an electrode using the same.
Abstract:
Provided is a supported catalyst for producing carbon nanotubes with a large specific surface area. The supported catalyst enables the production of carbon nanotubes with a large specific surface area in high yield. Therefore, the catalyst can be used in various fields. Also provided are carbon nanotubes produced using the supported catalyst.