Abstract:
An organic light emitting display device includes a substrate having a first sub-pixel, a second sub-pixel, a third sub-pixel and a fourth sub-pixel arranged in a quad type of a 2×2 matrix form, a first color filter disposed in the first sub-pixel, a second color filter disposed in the second sub-pixel, a third color filter disposed in the third sub-pixel, and a planarization layer covering the first to third color filters, wherein the planarization layer has a concave portion of a lens shape in the fourth sub-pixel, wherein the concave portion has a width greater than that of the fourth sub-pixel. Accordingly, the organic light emitting display device with improved light extraction efficiency of the fourth sub-pixel may be implemented.
Abstract:
An organic light emitting display device includes a substrate having a first sub-pixel, a second sub-pixel, a third sub-pixel and a fourth sub-pixel arranged in a quad type of a 2×2 matrix form, a first color filter disposed in the first sub-pixel, a second color filter disposed in the second sub-pixel, a third color filter disposed in the third sub-pixel, and a planarization layer covering the first to third color filters, wherein the planarization layer has a concave portion of a lens shape in the fourth sub-pixel, wherein the concave portion has a width greater than that of the fourth sub-pixel. Accordingly, the organic light emitting display device with improved light extraction efficiency of the fourth sub-pixel may be implemented.
Abstract:
A liquid crystal polymer composition comprising a liquid crystal, acrylic monomers including an acrylic monomer group (A) including a cyclic ring and an acrylic monomer group (B) including a chain structure or a cyclohexanol, and a photo initiator.
Abstract:
An adhesive film includes an upper protective layer, a lower protective layer, and an adhesive layer between the upper protective layer and the lower protective layer. The adhesive layer includes an acrylic resin, a photoinitiator, and a fluorinated monomer. The fluorinated monomer includes an amount of 0.1 parts by weight or more based on 100 parts by weight of the acrylic resin.
Abstract:
A manufacturing method of a micro-LED display device comprises forming a plurality of thin-film transistor array areas that includes a plurality of thin-film transistor arrays on a first substrate; forming a plurality of micro-LED array areas that includes a plurality of micro-LED arrays on a second substrate; transferring the plurality of micro-LED array areas that correspond to the plurality of thin-film transistor array areas onto the first substrate; forming a bank film on a third substrate over the first substrate; patterning the bank film to form a first bank layer that corresponds to a boundary area between the plurality of micro-LED arrays and a second bank layer that corresponds to an edge area of the plurality of micro-LED array areas, to form a pixel area and a pixel array area, and to remove the bank film in a boundary area between the second bank layers adjacent to each other; cutting the third substrate and the first substrate along a scribe zone that is set in a boundary area between the second bank layers adjacent to each other; and separating a plurality of pixel arrays that includes the plurality of thin-film transistor arrays and the plurality of micro-LED arrays from the first substrate and transferring the plurality of pixel arrays onto a fourth substrate.
Abstract:
A liquid crystal polymer composition comprising a liquid crystal, acrylic monomers including an acrylic monomer group (A) including a cyclic ring and an acrylic monomer group (B) including a chain structure or a cyclohexanol, and a photo initiator.
Abstract:
A liquid crystal polymer composition comprising a liquid crystal, acrylic monomers including an acrylic monomer group (A) including a cyclic ring and an acrylic monomer group (B) including a chain structure or a cyclohexanol, and a photo initiator.
Abstract:
An apparatus includes a substrate; a display panel on the substrate; and a protective film protecting one of the substrate and the display panel, wherein the protective film includes a first protective film and a second protective film, wherein the first protective film is disposed closer to the display panel than the second protective film, and wherein the first protective film includes a polymerizable compound having an adhesive strength that changes with energy irradiated onto the polymerizable compound.
Abstract:
A liquid crystal polymer composition comprising a liquid crystal, acrylic monomers including an acrylic monomer group (A) including a cyclic ring and an acrylic monomer group (B) including a chain structure or a cyclohexanol, and a photo initiator.
Abstract:
The present disclosure provides a liquid crystal display device and a method for manufacturing the same. The device includes: a first substrate; a second substrate spaced apart from and opposite to the first substrate; a first lower alignment layer formed on an upper surface of the first substrate; a first upper alignment layer formed on a lower surface of the second substrate; a second alignment layer formed in an array on either or both of an upper surface of the first lower alignment layer and a lower surface of the first upper alignment layer; a polymer barrier positioned between the first substrate and the second substrate, the polymer barrier formed on the array of the second alignment layer; and a liquid crystal positioned between the polymer barriers.