Abstract:
Systems and techniques are disclosed for driver assistance. A driver assistance apparatus executes a first plurality of operations for a first frame of stereo images acquired by a stereo camera, and then executes a second plurality of operations for a second frame of the stereo images. The driver assistance apparatus includes at least one processor configured to receive the first frame from the stereo camera and determine a first scheduling for the first plurality of operations in the first frame, execute the first plurality of operations according to the first scheduling, and measure execution times of the first plurality of operations according to the first scheduling. The at least one processor then receives the second frame from the stereo camera and determines a second scheduling for the second plurality of operations based on the measured execution times of the first plurality operations that were executed in the first frame.
Abstract:
An apparatus that provides an around view image and that includes: a camera unit that is configured to obtain an outside image of the vehicle; and a processor that is configured to: determine a connection state between a trailer and the vehicle, receive the outside image of the vehicle from the camera unit, based on the outside image of the vehicle, determine an attitude of the trailer, and based on the attitude of the trailer, generate a control signal to control travel of the vehicle is disclosed.
Abstract:
A driver assistance apparatus includes a camera for acquiring a vehicle front view image or a surroundings-of-vehicle image; and a processor for providing a height control signal for a suspension for adjusting an expected impacted portion according to collision between a driver's vehicle and an object detected in the vehicle front view image or the surroundings-of-vehicle image.
Abstract:
Systems and techniques are disclosed for providing driver assistance in a vehicle. A driver assistance apparatus includes a stereo camera configured to acquire stereo images of a view ahead of a vehicle, and a processor configured to generate a depth map based on the acquired stereo images and to determine whether a road segment that is within the view ahead of the vehicle is an uphill road segment or a downhill road segment based on the generated depth map.