METHODS AND COMPOSITIONS FOR NUCLEIC ACID AMPLIFICATION

    公开(公告)号:US20190284597A1

    公开(公告)日:2019-09-19

    申请号:US16308803

    申请日:2017-06-09

    Abstract: In some embodiments, the disclosure relates generally to methods, as well as related compositions and kits for recombinase-mediated nucleic acid amplification, such as recombinase-polymerase amplification (RPA), of a nucleic acid template using at least one blocked primer that contains a 5′ domain, at least one nucleotide that is cleavable by an RNase H enzyme, a 3′ domain, wherein the primer is not extendable by a polymerase, and wherein the 3′ domain has a length of 7-100 nucleotides, for example 10-30 nucleotides. These methods and the use of a blocked primer reduce or eliminate non-specific amplification products, such as primer dimers, which are generated in RPA reactions.

    METHODS AND COMPOSITIONS FOR NUCLEIC ACID AMPLIFICATION

    公开(公告)号:US20220162660A1

    公开(公告)日:2022-05-26

    申请号:US17667334

    申请日:2022-02-08

    Abstract: In some embodiments, the disclosure relates generally to methods, as well as related compositions and kits for recombinase-mediated nucleic acid amplification, such as recombinase-polymerase amplification (RPA), of a nucleic acid template using at least one blocked primer that contains a 5′ domain, at least one nucleotide that is cleavable by an RNase H enzyme, a 3′ domain, wherein the primer is not extendable by a polymerase, and wherein the 3′ domain has a length of 7-100 nucleotides, for example 10-30 nucleotides. These methods and the use of a blocked primer reduce or eliminate non-specific amplification products, such as primer dimers, which are generated in RPA reactions.

    SYSTEM AND METHOD FOR PREPARING A SEQUENCING DEVICE

    公开(公告)号:US20200072826A1

    公开(公告)日:2020-03-05

    申请号:US16543389

    申请日:2019-08-16

    Abstract: The disclosure generally relates to systems, methods, and apparatuses for magnetic bead loading. An example embodiment of the disclosure relates to mixing magnetic beads with sequencing beads to form a solution. The solution containing both beads is injected onto a microchip having a plurality of microwells. The magnetic beads may have larger diameter than the microwell while the sequencing beads may have a smaller diameter, allowing them to enter and reside in the microwell. One or more magnets positioned under the microchip move back and forth across the microchip surface. The magnetic beads form a line and follow the movement of the magnets. During rounds of sweeping, the sequencing beads load into the respective wells. The magnets may be disengaged and the magnetic beads may be washed away after the sequencing beads are loaded.

Patent Agency Ranking