摘要:
Embodiments described herein are directed to an apparatus for generating a precursor for a semiconductor processing system. In one embodiment, an apparatus for generating a precursor gas during a vapor deposition process is described. The apparatus includes a canister containing an interior volume between a lid and a bottom, a gaseous inlet and a gaseous outlet disposed on the lid, a plurality of silos coupled to the bottom and extending from a lower region to an upper region of the interior volume, and a tantalum precursor having a chlorine concentration of about 5 ppm or less contained within the lower region of the canister.
摘要:
In one embodiment, an apparatus for performing an atomic layer deposition (ALD) process is provided which includes a chamber body containing a substrate support, a lid assembly attached to the chamber body, a remote plasma system (RPS) in fluid communication with the reaction zone, a centralized expanding conduit extending through the lid assembly and expanding radially outwards, a first gas delivery sub-assembly configured to deliver a first process gas, and a second gas delivery sub-assembly configured to deliver a second process gas into the centralized expanding conduit. The first gas delivery sub-assembly contains an annular channel encircling and in fluid communication with the centralized expanding conduit, wherein the annular channel is adapted to deliver the first process gas through a plurality of passageways and nozzles and into the centralized expanding conduit. The second gas delivery sub-assembly contains a gas inlet in fluid communication to the centralized expanding conduit.
摘要:
A precursor and method for filling a feature in a substrate. The method generally includes depositing a barrier layer, the barrier layer being formed from pentakis(dimethylamido)tantalum having less than about 5 ppm of impurities. The method additionally may include depositing a seed layer over the barrier layer and depositing a conductive layer over the seed layer. The precursor generally includes pentakis(dimethylamido)tantalum having less than about 5 ppm of impurities. The precursor is generated in a canister coupled to a heating element configured to reduce formation of impurities.
摘要:
Embodiments of the present invention are directed to an apparatus for generating a precursor for a semiconductor processing system (320). The apparatus includes a canister (300) having a sidewall (402), a top portion and a bottom portion. The canister (300) defines an interior volume (438) having an upper region (418) and a lower region (434). In one embodiment, the apparatus further includes a heater (430) partially surrounding the canister (300). The heater (430) creates a temperature gradient between the upper region (418) and the lower region (434). Also claimed is a method of forming a barrier layer from purified pentakis (dimethylamido) tantalum, for example a tantalum nitride barrier layer by atomic layer deposition.
摘要:
Embodiments of the invention provide chemical precursor ampoules that may be used during vapor deposition processes. In one embodiment, an apparatus for generating a chemical precursor gas used in a vapor deposition processing system is provided which includes a canister having a sidewall, a top, and a bottom forming an interior volume and a solid precursor material at least partially contained within a lower region of the interior volume. The apparatus further contains an inlet port and an outlet port in fluid communication with the interior volume and an inlet tube connected to the inlet port and positioned to direct a carrier gas towards the sidewall and away form the outlet port. In one example, the solid precursor contains pentakis(dimethylamido) tantalum (PDMAT). In another example, the apparatus contains a plurality of baffles that form an extended mean flow path between the inlet port and the outlet port.
摘要:
Embodiments of an apparatus for generating a chemical precursor used in a vapor deposition processing system are provide which include a canister having a sidewall, a top, and a bottom forming an interior volume which is in fluid communication with an inlet port and an outlet port. The canister contains a plurality of baffles that extend from the bottom to an upper portion of the interior volume and form an extended mean flow path between the inlet port and the outlet port. In one embodiment, the baffles are contained on a prefabricated insert positioned on the bottom of the canister. In one example, an inlet tube may extend from the inlet port into the interior region and be positioned substantially parallel to the baffles. An outlet end of the inlet tube may be adapted to direct a gas flow away from the outlet port, such as towards the sidewall or top of the canister.
摘要:
In one embodiment, an apparatus for performing an atomic layer deposition process is provided which includes a chamber body having a substrate support, a lid assembly attached to the chamber body, and delivery sub-assemblies coupled to the lid assembly and configured to deliver process gases into a centralized expanding conduit, which extends through the lid assembly and expands radially outward. The first gas delivery sub-assembly contains an annular mixing channel encircling and in fluid communication with the centralized expanding conduit, wherein the annular mixing channel is adapted to deliver a first process gas through a plurality of passageways and nozzles and into the centralized expanding conduit. A first gas inlet may be coupled to the annular mixing channel and positioned to provide the first process gas to the annular mixing channel. The second gas delivery sub-assembly contains a second gas inlet in fluid communication to the centralized expanding conduit.
摘要:
In one embodiment, an apparatus for performing an atomic layer deposition (ALD) process is provided which includes a chamber body containing a substrate support, a lid assembly attached to the chamber body, a remote plasma system (RPS) in fluid communication with the reaction zone, a centralized expanding conduit extending through the lid assembly and expanding radially outwards, a first gas delivery sub-assembly configured to deliver a first process gas, and a second gas delivery sub-assembly configured to deliver a second process gas into the centralized expanding conduit. The first gas delivery sub-assembly contains an annular channel encircling and in fluid communication with the centralized expanding conduit, wherein the annular channel is adapted to deliver the first process gas through a plurality of passageways and nozzles and into the centralized expanding conduit. The second gas delivery sub-assembly contains a gas inlet in fluid communication to the centralized expanding conduit.
摘要:
Embodiments described herein are directed to an apparatus for generating a precursor for a semiconductor processing system. In one embodiment, an apparatus for generating a precursor gas during a vapor deposition process is described. The apparatus includes a canister containing an interior volume between a lid and a bottom, a gaseous inlet and a gaseous outlet disposed on the lid, a plurality of silos coupled to the bottom and extending from a lower region to an upper region of the interior volume, and a tantalum precursor having a chlorine concentration of about 5 ppm or less contained within the lower region of the canister.
摘要:
A method and apparatus for performing multiple deposition processes is provided. In one embodiment, the apparatus includes a chamber body and a gas distribution assembly disposed on the chamber body. In one embodiment, the method comprises positioning a substrate surface to be processed within a chamber body, delivering two or more compounds into the chamber body utilizing a gas distribution assembly disposed on the chamber body to deposit a film comprising a first material, and then delivering two or more compounds into the chamber body utilizing a gas distribution assembly disposed on the chamber body to deposit a film comprising a second material. In one aspect of these embodiments, the gas distribution assembly includes a gas conduit in fluid communication with the chamber body, two or more isolated gas inlets equipped with one or more high speed actuating valves in fluid communication with the gas conduit, and a mixing channel in fluid communication with the gas conduit. The valves are adapted to alternately pulse one or more compounds into the gas conduit, and the mixing channel is adapted to deliver a continuous flow of one or more compounds into the gas conduit.