摘要:
Processes for fabricating a contact grid for a photovoltaic cell generally includes providing a photovoltaic cell having an antireflective coating disposed on a sun facing side, the photovoltaic cell comprising a silicon substrate having a p-n junction; soft stamping a pattern of a UV sensitive photoresist and/or polymer onto the antireflective coating; exposing the UV sensitive photoresist and/or polymer to ultraviolet radiation to cure the UV sensitive photoresist and/or polymer; etching the pattern to form openings in the antireflective coating that define the contact grid; stripping the UV sensitive photoresist and/or polymer; and depositing a conductive metal into the openings defined by the pattern. The metal based paste can be aluminum based, which can be annealed at a relatively low temperature.
摘要:
Processes for fabricating a contact grid for a photovoltaic cell generally includes providing a photovoltaic cell having an antireflective coating disposed on a sun facing side, the photovoltaic cell comprising a silicon substrate having a p-n junction; soft stamping a pattern of a UV sensitive photoresist and/or polymer onto the antireflective coating; exposing the UV sensitive photoresist and/or polymer to ultraviolet radiation to cure the UV sensitive photoresist and/or polymer; etching the pattern to form openings in the antireflective coating that define the contact grid; stripping the UV sensitive photoresist and/or polymer; and depositing a conductive metal into the openings defined by the pattern. The metal based paste can be aluminum based, which can be annealed at a relatively low temperature.
摘要:
Processes for fabricating a contact grid for a photovoltaic cell generally includes providing a photovoltaic cell having an antireflective coating disposed on a sun facing side, the photovoltaic cell comprising a silicon substrate having a p-n junction; soft stamping a pattern of a UV sensitive photoresist and/or polymer onto the antireflective coating; exposing the UV sensitive photoresist and/or polymer to ultraviolet radiation to cure the UV sensitive photoresist and/or polymer; etching the pattern to form openings in the antireflective coating that define the contact grid; stripping the UV sensitive photoresist and/or polymer; and depositing a conductive metal into the openings defined by the pattern. The metal based paste can be aluminum based, which can be annealed at a relatively low temperature.
摘要:
A method for manufacturing a photovoltaic solar cell device includes the following. A p-n junction having a first doping density is formed. Formation of the p-n junction is enhanced by introducing a second doping density to form high doped areas for a dual emitter application. The high doped areas are defined by a masking process integrated with the formation of the p-n junction, resulting in a mask pattern of the high doped areas. A metallization of the high doped areas occurs in accordance with the mask pattern of the high doped areas.
摘要:
A method for manufacturing a photovoltaic solar cell device includes the following. A p-n junction having a first doping density is formed. Formation of the p-n junction is enhanced by introducing a second doping density to form high doped areas for a dual emitter application. The high doped areas are defined by a masking process integrated with the formation of the p-n junction, resulting in a mask pattern of the high doped areas. A metallization of the high doped areas occurs in accordance with the mask pattern of the high doped areas.
摘要:
A method of manufacturing a photovoltaic cell using a semiconductor wafer having a front side and a rear side, wherein the photovoltaic cell produces electricity when the front side of the semiconductor wafer is illuminated.
摘要:
A method of manufacturing a photovoltaic cell using a semiconductor wafer having a front side and a rear side, wherein the photovoltaic cell produces electricity when the front side of the semiconductor wafer is illuminated., the method comprising the steps of:
摘要:
The present invention provides a method for producing a temporary chip carrier for semiconductor chip burn-in test and speed sorting. A multi-layered substrate or card, usually comprised of one of various materials is made by offsetting the conductor-filled vias or holes in the outer few layers with the outer most layer not being filled with a conductor, such that a partially filled via or hole is produced. This effectively produces a smaller surface conductor feature, on which the semiconductor chip is temporarily attached, electrically tested, and subsequently removed using various methods, at forces much lower than normal chip removal processes require.
摘要:
A multilayer ceramic substrate in which an outer metal pad is anchored to the substrate by a single metal-filled via in the first ceramic layer adjacent to the metal pad. In turn, this single metal-filled via is anchored to the substrate by a larger, single metal-filled via in the next ceramic layer adjacent to the first ceramic layer. Preferably, the metal-filled vias and metal pad are 100 volume percent metal.
摘要:
The present invention relates generally to a new apparatus and method for screening using electrostatic adhesion. More particularly, the invention encompasses an apparatus that uses an electrostatic charge during the screening process for a semiconductor substrate. Basically, a backing layer is adhered to a green ceramic sheet using an electrostatic charge, while the green ceramic sheet is processed.