摘要:
A cooling apparatus and method of fabrication are provided for facilitating removal of heat from a heat-generating electronic device. The method of fabrication includes: obtaining a solder material; disposing the solder material on a surface to be cooled; and reflowing and shaping the solder material disposed on the surface to be cooled to configure the solder material as a base with a plurality of fins extending therefrom. In addition to being in situ-configured on the surface to be cooled, the base is simultaneously metallurgically bonded to the surface to be cooled. The solder material, configured as the base with a plurality of fins extending therefrom, is a single, monolithic structure thermally attached to the surface to be cooled via the metallurgical bonding thereof to the surface to be cooled.
摘要:
A cooling apparatus and method of fabrication are provided for facilitating removal of heat from a heat-generating electronic device. The method of fabrication includes: obtaining a solder material; disposing the solder material on a surface to be cooled; and reflowing and shaping the solder material disposed on the surface to be cooled to configure the solder material as a base with a plurality of fins extending therefrom. In addition to being in situ-configured on the surface to be cooled, the base is simultaneously metallurgically bonded to the surface to be cooled. The solder material, configured as the base with a plurality of fins extending therefrom, is a single, monolithic structure thermally attached to the surface to be cooled via the metallurgical bonding thereof to the surface to be cooled.
摘要:
A cooling apparatus and method are provided for cooling an electronics rack. The cooling apparatus includes an air-cooled cooling station, which has a liquid-to-air heat exchanger and ducting for directing a cooling airflow across the heat exchanger. A cooling subsystem is associated with the electronics rack, and includes a liquid-cooled condenser facilitating immersion-cooling of electronic components of the electronics rack, a liquid-cooled structure providing conductive cooling to electronic components of the electronics rack, or an air-to-liquid heat exchanger associated with the rack and cooling airflow passing through the electronics rack. A coolant loop couples the cooling subsystem to the liquid-to-air heat exchanger. In operation, heat is transferred via circulating coolant from the electronics rack, and rejected in the liquid-to-air heat exchanger of the cooling station to the cooling airflow passing across the liquid-to-air heat exchanger. In one embodiment, the cooling airflow is outdoor air.
摘要:
Apparatus and method are provided for facilitating liquid cooling one or more components of an electronic subsystem chassis disposed within an electronics rack. The apparatus includes a rack-level coolant manifold assembly and at least one movable chassis-level manifold subassembly. The rack-level coolant manifold assembly includes a rack-level inlet manifold and a rack-level outlet manifold, and each movable chassis-level manifold subassembly includes a chassis-level coolant inlet manifold coupled in fluid communication with the rack-level inlet manifold, and a chassis-level coolant outlet manifold coupled in fluid communication with the rack-level outlet manifold. The chassis-level manifold subassembly is slidably coupled to the electronics rack to facilitate access to one or more removable components of the electronic subsystem chassis. In one embodiment, the electronics subsystem chassis is a multi-blade center system having multiple removable blades, each blade being an electronics subsystem.
摘要:
Cooling apparatus and methods are provided for partial immersion-cooling of multiple electronic components. The cooling apparatus includes a housing at least partially surrounding and forming a compartment about the components, and a fluid disposed within the compartment. First and second electronic components are at least partially non-immersed within the fluid, with the first component being a different type of electronic component with different configuration than the second component. A vapor condenser is provided with a vapor-condensing surface disposed within the compartment for condensing fluid vapor, and a condensate redirect structure is disposed within the compartment between the vapor condenser and the first and second components. The redirect structure is differently configured over the first electronic component compared with over the second electronic component, and provides a different pattern of condensate drip over the first component compared with over the second component.
摘要:
Method and air-cooling unit are provided for dynamically adjusting airflow rate through and heat removal rate of the air-cooling unit to facilitate cooling of one or more electronics racks of a data center. The air-cooling unit includes a housing, an air-moving device, and an air-to-liquid heat exchanger. The air-moving device moves air through the housing from the air inlet side to the air outlet side thereof, and the heat exchanger cools the air passing through the housing. A control unit controls the air-moving device and the flow of liquid coolant through the heat exchanger to automatically, dynamically adjust airflow rate and heat removal rate of the air-cooling unit to achieve a current airflow rate target and current heat removal rate target therefore. The current targets are based on airflow rate through and heat load generated by one or more associated electronics racks of the data center.
摘要:
A method of fabricating a multi-fluid cooling system is provided for removing heat from one or more electronic devices. The cooling system includes a multi-fluid manifold structure with at least one first fluid inlet orifice and at least one second fluid inlet orifice for concurrently, separately injecting a first fluid and a second fluid onto a surface to be cooled when the cooling system is employed to cool one or more electronic devices, wherein the first fluid and the second fluid are immiscible, and the first fluid has a lower boiling point temperature than the second fluid. When the cooling system is employed to cool one or more electronic devices and the first fluid boils, evolving first fluid vapor condenses in situ by direct contact with the second fluid of higher boiling point temperature.
摘要:
A cooling system and method are provided for cooling air exiting one or more electronics racks of a data center. The cooling system includes at least one cooling station separate and freestanding from at least one respective electronics rack of the data center, and configured for disposition of an air outlet side of electronics rack adjacent thereto for cooling egressing air from the electronics rack. The cooling station includes a frame structure separate and freestanding from the respective electronics rack, and an air-to-liquid heat exchange assembly supported by the frame structure. The heat exchange assembly includes an inlet and an outlet configured to respectively couple to coolant supply and coolant return lines for facilitating passage of coolant therethrough. The air-to-liquid heat exchange assembly is sized to cool egressing air from the air outlet side of the respective electronics rack before being expelled into the data center.
摘要:
Thermoelectric-enhanced air and liquid cooling of an electronic system is provided by a cooling apparatus which includes a liquid-cooled structure in thermal communication with an electronic component(s), and liquid-to-liquid and air-to-liquid heat exchangers coupled in series fluid communication via a coolant loop, which includes first and second loop portions coupled in parallel. The liquid-cooled structure is supplied coolant via the first loop portion, and a thermoelectric array is disposed with the first and second loop portions in thermal contact with first and second sides of the array. The thermoelectric array operates to transfer heat from coolant passing through the first loop portion to coolant passing through the second loop portion, and cools coolant passing through the first loop portion before the coolant passes through the liquid-cooled structure. Coolant passing through the first and second loop portions passes through the series-coupled heat exchangers, one of which functions as heat sink.
摘要:
A composite interface and methods of fabrication are provided for coupling a cooling assembly to an electronic device. The interface includes a plurality of thermally conductive wires formed of a first material having a first thermal conductivity, and a thermal interface material at least partially surrounding the wires. The interface material, which thermally interfaces the cooling assembly to a surface to be cooled of the electronic device, is a second material having a second thermal conductivity, wherein the first thermal conductivity is greater than the second thermal conductivity. At least some wires reside partially over a first region of higher heat flux and extend partially over a second region of lower heat flux, wherein the first and second regions are different regions of the surface to he cooled. These wires function as thermal spreaders facilitating heat transfer from the surface to be cooled to the cooling assembly.