Abstract:
An array substrate for a liquid crystal display includes a substrate and first and second subpixels which are positioned on the substrate and are defined by a crossing structure of one gate line, a first data line, a second data line, a first common line, and a second common line. The first subpixel includes a first semiconductor layer, a first source electrode, a first drain electrode, and a first pixel electrode connected to the first drain electrode. The second subpixel includes a second semiconductor layer, a second source electrode, a second drain electrode, and a second pixel electrode connected to the second drain electrode. The first and second subpixels share the one gate line with each other, and the first drain electrode and the second drain electrode are exposed through one contact hole.
Abstract:
An array substrate for a liquid crystal display includes a substrate and first and second subpixels which are positioned on the substrate and are defined by a crossing structure of one gate line, a first data line, a second data line, a first common line, and a second common line. The first subpixel includes a first semiconductor layer, a first source electrode, a first drain electrode, and a first pixel electrode connected to the first drain electrode. The second subpixel includes a second semiconductor layer, a second source electrode, a second drain electrode, and a second pixel electrode connected to the second drain electrode. The first and second subpixels share the one gate line with each other, and the first drain electrode and the second drain electrode are exposed through one contact hole.
Abstract:
A display apparatus includes a display panel including an active area that includes at least one module area and a bezel area positioned outside the active area, wherein a pixel array is positioned in the active area, and the at least one module area is formed as a light-transmissive area.
Abstract:
A disclosed display device comprises a data line of a display panel, a first switching circuit of the display panel, the first switching circuit including an input and a transistor to pass a test voltage from the input of the first switching circuit to a transistor electrode of the transistor, and a bridge pattern of the display panel, the bridge pattern electrically connecting the transistor electrode to the data line, the bridge pattern being in a different layer of the display panel than the transistor electrode.
Abstract:
A display apparatus includes a display panel including an active area that includes at least one module area and a bezel area positioned outside the active area, wherein a pixel array is positioned in the active area, and the at least one module area is formed as a light-transmissive area.
Abstract:
Disclosed is a display apparatus having a module area in a display panel, the display apparatus includes a display panel having an active area including at least one module area and a bezel area positioned outside the active area; and a pixel array positioned on a substrate in the active area, wherein the at least one module area includes the substrate of the display panel and has a thickness smaller than that of the active area excluding the at least one module area.
Abstract:
A display device with a reduced bezel area is disclosed. In one embodiment, the display device includes a cut-out region on which an electronic component is to be placed, and a display panel for displaying an image. The cut-out region extends from a first side toward a second side of the display device. The display panel includes a first display area between a third side of the display device and the cut-out region, a second display area between a fourth side of the display device and the cut-out region, and a third display area between the third side and the fourth side of the display device, the third display area disposed below the first display area, the second display area, and the cut-out region toward the second side of the display device.
Abstract:
An array substrate for a liquid crystal display includes a substrate and first and second subpixels which are positioned on the substrate and are defined by a crossing structure of one gate line, a first data line, a second data line, a first common line, and a second common line. The first subpixel includes a first semiconductor layer, a first source electrode, a first drain electrode, and a first pixel electrode connected to the first drain electrode. The second subpixel includes a second semiconductor layer, a second source electrode, a second drain electrode, and a second pixel electrode connected to the second drain electrode. The first and second subpixels share the one gate line with each other, and the first drain electrode and the second drain electrode are exposed through one contact hole.
Abstract:
A light emitting display device includes a display panel in which a plurality of pixels is disposed, each of the plurality of pixels includes a plurality of sub pixels, each of the plurality of sub pixels includes: a first light emitting diode configured to emit light by a first driving current; a first lens which refracts light emitted from the first light emitting diode; a second light emitting diode configured to emit light by a second driving current; a second lens which refracts light emitted from the second light emitting diode; a driving transistor configured to control the driving currents, and a capacitor which is connected to the driving transistor, and each of an anode electrode of the first light emitting diode and an anode electrode of the second light emitting diode may be initialized to a voltage different from a voltage which is applied to the capacitor.
Abstract:
A display apparatus includes a display panel including an active area that includes at least one module area and a bezel area positioned outside the active area, wherein a pixel array is positioned in the active area, and the at least one module area is formed as a light-transmissive area.