摘要:
A medical implant includes a bioerodible portion that includes a bioerodible polymer and a bioerodible metal. The bioerodible polymer matrix degrades under physiological conditions to form acidic degradation products. The bioerodible metal degrades under physiological conditions to form basic degradation products. The acidic degradation products and the basic degradation products buffer at least a portion of the medical implant. In one aspect, the bioerodible portion includes a bioerodible polymer matrix and a bioerodible metal within the bioerodible polymer matrix. In another aspect, the medical implant can include a body, a plurality of discrete deposits of the bioerodible polymer on the body, and a plurality of discrete deposits of the bioerodible metal on the body.
摘要:
A medical implant includes a bioerodible portion that includes a bioerodible polymer and a bioerodible metal. The bioerodible polymer matrix degrades under physiological conditions to form acidic degradation products. The bioerodible metal degrades under physiological conditions to form basic degradation products. The acidic degradation products and the basic degradation products buffer at least a portion of the medical implant. In one aspect, the bioerodible portion includes a bioerodible polymer matrix and a bioerodible metal within the bioerodible polymer matrix. In another aspect, the medical implant can include a body, a plurality of discrete deposits of the bioerodible polymer on the body, and a plurality of discrete deposits of the bioerodible metal on the body.
摘要:
A biomimetic electrode material including a fibrous matrix including a conductive polymer and an ion conducting polymeric material is described. The biomimetic electrode material may be used in a number of body-implantable applications including cardiac and neuro-stimulation applications. The biomimetic electrode material can be formed using electrospinning and other related processes. The biomimetic electrode may facilitate efficient charge transport from ionically conductive tissue to the electronically conductive electrode, and may induce surrounding tissue to attach or interface directly to the implanted device, increasing the biocompatibility of the device.
摘要:
The present invention comprises a medical device having an underlying structure on which is disposed a fiber meshwork composed of one or more fibers of substantially uniform diameter. The fiber meshwork may optionally have a multi-layer structure disposed upon it. Either or both of the fiber meshwork or the multi-layer structure may have one or more therapeutic agents absorbed within it. The fiber meshwork is permeable to body fluids and thereby permits body fluids to contact the underlying structure to facilitate its controlled disintegration. The fiber meshwork degrades more slowly than the underlying structure thereby permitting release of the therapeutic agent over a timescale longer than that of the lifetime of the underlying structure, while also ensuring that the support function of the underlying structure is not abrogated by the disintegration of the underlying structure.
摘要:
In accordance with an aspect of the invention, implantable or insertable medical devices are provided in which a porous layer is disposed over a therapeutic-agent-containing region. In accordance with another aspect of the invention, medical devices are fabricated by a method in which a porous layer is deposited over a therapeutic-agent-containing region using a field-injection-based electrospray technique.
摘要:
Endoprostheses and methods of making endoprostheses are disclosed. For example, endoprostheses are described that include an endoprosthesis body, a biodegradable metallic tie layer, and a polymer coating about the endoprosthesis body. The biodegradable tie layer and the polymer coating can have a high peel strength from the body.
摘要:
A biomimetic electrode material including a fibrous matrix including a conductive polymer and an ion conducting polymeric material is described. The biomimetic electrode material may be used in a number of body-implantable application including cardiac and neuro-stimulation applications. The biomimetic electrode material can be formed using electrospinning and other related processes. The biomimetic electrode may facilitate efficient charge transport from ionically conductive tissue to the electronically conductive electrode and may induce surrounding tissue to attach or interface directly to the implanted device, increasing the biocompatibility of the device.