Abstract:
A semiconductor element and a manufacturing method of the same are provided. The semiconductor element includes a substrate, a plurality of doping strips, a memory material layer, a plurality of conductive damascene structures, and a dielectric structure. The doping strips are formed in the substrate. The memory material layer is formed on the substrate, and the memory material layer comprises a memory area located on two sides of the doping strips. The conductive damascene structures are formed on the memory material layer. The dielectric structure is formed on the doping strips and between the conductive damascene structures. The conductive damascene structures are extended in a direction perpendicular to a direction which the doping strips are extended in.
Abstract:
A semiconductor element and a manufacturing method of the same are provided. The semiconductor element includes a substrate, a plurality of doping strips, a memory material layer, a plurality of conductive damascene structures, and a dielectric structure. The doping strips are formed in the substrate. The memory material layer is formed on the substrate, and the memory material layer comprises a memory area located on two sides of the doping strips. The conductive damascene structures are formed on the memory material layer. The dielectric structure is formed on the doping strips and between the conductive damascene structures. The conductive damascene structures are extended in a direction perpendicular to a direction which the doping strips are extended in.
Abstract:
A method of manufacturing a metal silicide is disclosed below. A substrate having a first region and a second region is provided. A silicon layer is formed on the substrate. A planarization process is performed to make the silicon layer having a planar surface. A part of the silicon layer is removed to form a plurality of first gates on the first region and to form a plurality of second gates on the second region. The height of the first gates is greater than the height of the second gates, and top surfaces of the first gates and the second gates have the same height level. A dielectric layer covering the first gates and the second gates is formed and exposes the top surfaces of the first gates and the second gates. A metal silicide is formed on the top surfaces of the first gates and the second gates.
Abstract:
A method of manufacturing a metal silicide is disclosed below. A substrate having a first region and a second region is provided. A silicon layer is formed on the substrate. A planarization process is performed to make the silicon layer having a planar surface. A part of the silicon layer is removed to form a plurality of first gates on the first region and to form a plurality of second gates on the second region. The height of the first gates is greater than the height of the second gates, and top surfaces of the first gates and the second gates have the same height level. A dielectric layer covering the first gates and the second gates is formed and exposes the top surfaces of the first gates and the second gates. A metal silicide is formed on the top surfaces of the first gates and the second gates.