Abstract:
Provided is a structure with a conductive plug including a substrate, a first dielectric layer, an etch stop layer, a second dielectric layer, a conductive plug and a liner. The substrate has a conductive region therein. The first dielectric layer, the etch stop layer and the second dielectric layer are sequentially formed on the substrate and have at least one opening therethrough. Besides, the opening has a substantially vertical sidewall. The conductive plug fills in the opening and is electrically connected to the conductive region. The liner surrounds the upper portion of the conductive plug. A method of forming a structure with a conductive plug is further provided.
Abstract:
Provided is a structure with a conductive plug including a substrate, a first dielectric layer, an etch stop layer, a second dielectric layer, a conductive plug and a liner. The substrate has a conductive region therein. The first dielectric layer, the etch stop layer and the second dielectric layer are sequentially formed on the substrate and have at least one opening therethrough. Besides, the opening has a substantially vertical sidewall. The conductive plug fills in the opening and is electrically connected to the conductive region. The liner surrounds the upper portion of the conductive plug. A method of forming a structure with a conductive plug is further provided.
Abstract:
A method of fabricating wordlines in semiconductor memory structures is disclosed that eliminates stringers between wordlines while maintaining a stable distribution of threshold voltage. A liner is deposited before performing a wordline etch, and a partial wordline etch is then performed. Remaining portions of the liner are removed, and the wordline etch is completed to form gates having vertical or tapered profiles.
Abstract:
A method of fabricating wordlines in semiconductor memory structures is disclosed that eliminates stringers between wordlines while maintaining a stable distribution of threshold voltage. A liner is deposited before performing a wordline etch, and a partial wordline etch is then performed. Remaining portions of the liner are removed, and the wordline etch is completed to form gates having vertical or tapered profiles.
Abstract:
A method of manufacturing a metal silicide is disclosed below. A substrate having a first region and a second region is provided. A silicon layer is formed on the substrate. A planarization process is performed to make the silicon layer having a planar surface. A part of the silicon layer is removed to form a plurality of first gates on the first region and to form a plurality of second gates on the second region. The height of the first gates is greater than the height of the second gates, and top surfaces of the first gates and the second gates have the same height level. A dielectric layer covering the first gates and the second gates is formed and exposes the top surfaces of the first gates and the second gates. A metal silicide is formed on the top surfaces of the first gates and the second gates.
Abstract:
A semiconductor structure and a manufacturing method thereof are provided. The semiconductor structure includes a stacked structure, a plurality of first conductive blocks, a plurality of first conductive layers, a plurality of second conductive layers, and a plurality of conductive damascene structures. The stacked structure, comprising a plurality of conductive strips and a plurality of insulating strips, is formed on a substrate, and the conductive strips and the insulating strips are interlaced. The first conductive blocks are formed on the stacked structure. The first conductive layers and the second conductive layers are formed on two sidewalls of the stacked structure, respectively. The conductive damascene structures are formed on two sides of the stacked structure, wherein each of the first conductive blocks is electrically connected to each of the conductive damascene structures via each of the first conductive strips and each of the second conductive strips.
Abstract:
A method of manufacturing a metal silicide is disclosed below. A substrate having a first region and a second region is provided. A silicon layer is formed on the substrate. A planarization process is performed to make the silicon layer having a planar surface. A part of the silicon layer is removed to form a plurality of first gates on the first region and to form a plurality of second gates on the second region. The height of the first gates is greater than the height of the second gates, and top surfaces of the first gates and the second gates have the same height level. A dielectric layer covering the first gates and the second gates is formed and exposes the top surfaces of the first gates and the second gates. A metal silicide is formed on the top surfaces of the first gates and the second gates.
Abstract:
A semiconductor structure and a manufacturing method thereof are provided. The semiconductor structure includes a stacked structure, a plurality of first conductive blocks, a plurality of first conductive layers, a plurality of second conductive layers, and a plurality of conductive damascene structures. The stacked structure, comprising a plurality of conductive strips and a plurality of insulating strips, is formed on a substrate, and the conductive strips and the insulating strips are interlaced. The first conductive blocks are formed on the stacked structure. The first conductive layers and the second conductive layers are formed on two sidewalls of the stacked structure, respectively. The conductive damascene structures are formed on two sides of the stacked structure, wherein each of the first conductive blocks is electrically connected to each of the conductive damascene structures via each of the first conductive strips and each of the second conductive strips.