Abstract:
Methods and apparatus are provided for performing log-likelihood ratio (LLR) computations in a pipeline. Portions of a metric used to compute LLR values are computed in one pipeline part. The portions correspond to all permutations of some received signal streams. The portions are combined with one permutation x2 of the received signal stream that was not included in the previous pipeline computation in a subsequent pipeline part to produce M values associated with a particular bit position. At each subsequent clock cycle, a different permutation of x2 is combined with the previously computed portions producing different M values. State values corresponding to different values of bit positions of the received stream are computed by finding the minimum among the M values, in each clock cycle, that affect a particular bit position. The state values are combined to compute the LLR values for the bit position in a final pipeline part.
Abstract:
A beamforming technique used in a MIMO wireless transmission system determines a transmitter beamforming steering matrix using a matrix equalizer of a transmitter or a receiver within the MIMO communication system, to thereby increase the speed and/or to decrease the processing needed to implement effective beamforming within the transmitter of the communication system. This beamforming technique can be used when a transmitter, with multiple transmitter antennas, is used to communicate with one or with multiple receivers within the communication system.
Abstract:
A low-density parity check (LDPC) encoder that calculate parity check values for a message using an LDPC parity check matrix is provided. A matrix-vector multiplication unit is operative to multiply a portion of the LDPC parity check matrix and the message to obtain an intermediate vector. A parallel recursion unit is operative to recursively calculate a first plurality of parity check values for the message based on the intermediate vector and to recursively calculate a second plurality of parity check values for the message based on the intermediate vector. The first plurality of parity check values are calculated in parallel with the second plurality of parity check values.
Abstract:
One or more communications parameters associated with a multiple input, multiple output (MIMO) signal transmitted by a transmitter are identified. The one or more communications parameters include one or more of (i) a number of receive antennas via which the MIMO signal is received, (ii) a number of spatial streams in the MIMO signal, and (iii) a signal to noise ratio (SNR) corresponding to the MIMO signal. A particular data detection technique of a plurality of data detection techniques employed by a receiver is selected in accordance with at least one of the one or more communications parameters.
Abstract:
Systems and techniques relating to wireless signal processing. A described technique includes receiving a signal, having subcarriers, over a wireless channel formed by a number-of-receive-antennas and a number-of-transmit-antennas; determining a signal quality measure of a received signal having subcarriers, the signal quality measure being based on channel gain matrices corresponding respectively to the subcarriers of the received signal, the channel gain matrices having dimensions of the number-of-receive-antennas by the number-of-transmit-antennas; determining a channel quality measure of the received signal that measures a frequency selectivity of the wireless channel; determining a data rate of information transmission over the wireless channel based on the signal quality measure and the channel quality measure, the signal quality measure serving as a primary determinant of the data rate and the channel quality measure serves as a secondary determinant of the data rate; and transmitting information over the wireless channel in accordance with the data rate.
Abstract:
An estimate of a multiple input, multiple output (MIMO) channel is computed, and an equalizer to be applied to signals received via the MIMO channel is computed. The equalizer is initialized based on the estimate of the MIMO channel. The equalizer is applied to a received signal, and the received signal is demodulated to generate a demodulated signal. The demodulated signal is decoded according to an error correction code to generate decoded data, and the decoded data is re-encoded according to the error correction code to generate re-encoded data. The re-encoded data is re-modulated to generate a re-modulated signal. The received signal is compared to the re-modulated signal, and the equalizer is updated based on the comparison. After updating the equalizer, the equalizer is applied to the received signal.
Abstract:
A transceiver utilizes a spatial spreading matrix to distribute two or more encoded spatial data streams to multiple antennas. The spatial spreading matrix satisfies one or more of the following two constraints: (a) the ratio of squared norms of the sum of the components of a row, for different rows of the spatial spreading matrix, is equal to a first constant sequence, and (b) the ratio of squared norms of the sum of a symbol S1 to be transmitted, when the symbol S1 is equal to 1 or −1, multiplied by each of the components of a row, for different rows of the spatial spreading matrix, is equal to a second constant sequence.
Abstract:
Systems and methods are provided for whitening noise of a received signal vector in a multiple-input multiple-output (MIMO) transmission or storage system. The whitening filter may be designed to whiten an interference component of the received signal vector, where the interference component is derived from modeling transmitter and receiver imperfections as a first coupling between MIMO transmitter outputs and a second coupling between MIMO receiver. The whitening filter may be computed based on the covariance matrix of the interference component.
Abstract:
An estimate of a multiple input, multiple output (MIMO) channel is computed, and an equalizer to be applied to signals received via the MIMO channel is computed. The equalizer is initialized based on the estimate of the MIMO channel. The equalizer is applied to a received signal, and the received signal is demodulated to generate a demodulated signal. The demodulated signal is decoded according to an error correction code to generate decoded data, and the decoded data is re-encoded according to the error correction code to generate re-encoded data. The re-encoded data is re-modulated to generate a re-modulated signal. The received signal is compared to the re-modulated signal, and the equalizer is updated based on the comparison. After updating the equalizer, the equalizer is applied to the received signal.
Abstract:
A method for performing a clear channel assessment to determine whether a wireless channel is clear for transmission of a transmit signal. The method includes receiving, through the wireless channel, a plurality of signals, wherein the plurality of signals are respectively received via a plurality of antennas of the receiver determining a signal strength of each of the plurality of signals, autocorrelating the plurality of signals to respectively generate a plurality of autocorrelated signals, weighting each autocorrelated signal of the plurality of autocorrelated signals based on one or more of the signal strengths determined for each of the plurality of signals, combining each autocorrelated signal, as weighted, to generate a combined signal, demodulating the combined signal, and determining, based at least in part on the demodulation of the combined signal, whether the wireless channel is clear for the transmission of the transmit signal onto the wireless channel.