Abstract:
A transceiver utilizes a spatial spreading matrix to distribute two or more encoded spatial data streams to multiple antennas. The spatial spreading matrix satisfies one or more of the following two constraints: (a) the ratio of squared norms of the sum of the components of a row, for different rows of the spatial spreading matrix, is equal to a first constant sequence, and (b) the ratio of squared norms of the sum of a symbol S1 to be transmitted, when the symbol S1 is equal to 1 or −1, multiplied by each of the components of a row, for different rows of the spatial spreading matrix, is equal to a second constant sequence.
Abstract:
Systems and methods for detecting data in a multiple input/multiple output signal. The method includes receiving a first signal associated with a first data value and a second signal associated with a second data value. A distance value between the received second signal and each possible second data value is calculated. Coordinates for a hypothetical first signal in light of a first possible second data value are calculated, and the first coordinate value is quantized to a nearest constellation point. A distance value between the received second signal and each possible second data value is calculated using the calculated constellation points. A determination is made of a log-likelihood ratio based on the determined distance values.
Abstract:
In a method for detecting a packet type of an orthogonal frequency division multiplexing (OFDM) data unit detected in a communication channel, a first estimate and a second estimate of a transmitted symbol are determined for each of at least some of a plurality of OFDM tones in an OFDM symbol of the data unit. A first distance and a second distance are determined between a received symbol and, respectively, the first estimate and the second estimate scaled by a channel response estimate corresponding to the OFDM tone. A first total distance is determined based on a mathematical summation of the first distances over the plurality of OFDM tones. A second total distance is determined based on a mathematical summation of the second distances over the plurality of OFDM tones. The packet type is determined based at least on the first total distance and the second total distance.
Abstract:
In a method for transmitting information in a wireless local area network (WLAN), a plurality of different data streams corresponding to a plurality of different devices are orthogonally multiplexed onto a single symbol stream without using channel state information corresponding to a plurality of channels between a transmitting device and the plurality of different devices. One or more transmit streams are generated using the single symbol stream.
Abstract:
Systems and methods for detecting data in a multiple input/multiple output signal. The method includes receiving a first signal associated with a first data value and a second signal associated with a second data value. A distance value between the received second signal and each possible second data value is calculated. Coordinates for a hypothetical first signal in light of a first possible second data value are calculated, and the first coordinate value is quantized to a nearest constellation point. A distance value between the received second signal and each possible second data value is calculated using the calculated constellation points. A determination is made of a log-likelihood ratio based on the determined distance values.
Abstract:
A plurality of training signal sets are transmitted. Each training signal set includes information sufficient to determine a channel estimate corresponding to a communication channel from a first station to a second station. A refined channel estimate is determined based on reception of the plurality of training signal sets.
Abstract:
Systems and methods are provided for processing a payload portion of a received signal in a single carrier mode or a multiple carrier mode based on a portion of the received signal. A single carrier signaling portion is received at a first rate, and whether the payload portion of the signal is a single carrier signal or a multiple carrier signal is detected from the received single carrier signaling portion. The payload portion of the received signal is received at the first rate and demodulated in a single carrier mode if the detecting determines that the payload portion of the received signal is a single carrier signal, and the payload portion of the received signal is demodulated in a multiple carrier mode if the detecting determines that the payload portion of the received signal is a multiple carrier signal.
Abstract:
A transceiver utilizes a spatial spreading matrix to distribute two or more encoded spatial data streams to multiple antennas. The spatial spreading matrix satisfies one or more of the following two constraints: (a) the ratio of squared norms of the sum of the components of a row, for different rows of the spatial spreading matrix, is equal to a first constant sequence, and (b) the ratio of squared norms of the sum of a symbol Sl to be transmitted, when the symbol Sl is equal to 1 or −1, multiplied by each of the components of a row, for different rows of the spatial spreading matrix, is equal to a second constant sequence.
Abstract:
In a method for generating steering matrices for beamforming, one or more subsets of one or more maximum transmit steering matrices are selected, where the maximum transmit steering matrices correspond to a maximum number of spatial streams able to be transmitted from a transmitter to a receiver. The subsets correspond to an actual number of spatial streams to be transmitted, and the subsets are applied to spatial streams to be transmitted. In an apparatus for generating steering matrices, a steering matrix calculator is configured to determine, from maximum transmit steering matrices, a plurality of steering coefficients corresponding to an actual number of spatial streams.
Abstract:
In a method for generating steering matrices for beamforming, one or more subsets of one or more maximum transmit steering matrices are selected, where the maximum transmit steering matrices correspond to a maximum number of spatial streams able to be transmitted from a transmitter to a receiver. The subsets correspond to an actual number of spatial streams to be transmitted, and the subsets are applied to spatial streams to be transmitted. In an apparatus for generating steering matrices, a steering matrix calculator is configured to determine, from maximum transmit steering matrices, a plurality of steering coefficients corresponding to an actual number of spatial streams.