摘要:
This invention relates generally to electrode materials, electrochemical cells employing such materials, and methods of synthesizing such materials. The electrode materials have a crystal structure with a high ratio of Li to metal M, which is found to improve capacity by enabling the transfer of a greater amount of lithium per metal, and which is also found to improve stability by retaining a sufficient amount of lithium after charging. Furthermore, synthesis techniques are presented which result in improved charge and discharge capacities and reduced particle sizes of the electrode materials.
摘要:
Non-normal statistics applied to diffusivity calculations accelerate screening of ionic conductors for electrochemical devices such as electric storage batteries, fuel cells, and sensors. Displacements of atomic species within a crystalline structure for a candidate ionic conductor material are analyzed using a Skellam distribution optionally combined with Gaussian noise to calculate values for the standard deviation, upper error bound, and lower error bound for predicted values of diffusivity (D). When the predicted values of D have sufficient statistical precision, the diffusivity calculation is terminated and the calculated diffusivity is compared to a threshold value of diffusivity. When the threshold has been exceeded, the candidate ionic conductor may be listed as a preferred good conductor. When the calculated diffusivity fails to exceed the threshold, the material may be listed as a poor conductor and may be eliminated from further consideration.
摘要:
This disclosure provides a positive electrode active lithium-excess metal oxide with composition LixMyO2 (0.6≤y≤0.85 and 0≤x+y≤2) for a lithium secondary battery with a high reversible capacity that is insensitive with respect to cation-disorder. The material exhibits a high capacity without the requirement of overcharge during the first cycles.
摘要:
Embodiments of a method, a system, and non-transitory computer readable storage media evaluating electrochemical qualities for interphase products. The disclosed embodiments perform a selection of a plurality of chemical phases for a solid electrolyte and at least one of the anode and cathode to be received. Thermodynamic data is received for the plurality of chemical phases. The retrieved thermodynamic data is received to evaluate a respective electrochemical quality for at least one of an interface between the solid electrolyte and the anode, and an interface between the solid electrolyte and the cathode.
摘要:
An energy storage device configured to exchange energy with an external device includes a container having walls, a lid covering the container and having a safety pressure valve, a negative electrode disposed away from the walls of the container, a positive electrode in contact with at least a portion of the walls of the container, and an electrolyte contacting the negative electrode and the positive electrode at respective electrode/electrolyte interfaces. The negative electrode, the positive electrode and the electrolyte include separate liquid materials within the container at an operating temperature of the battery.
摘要:
A sodium-conductive solid-state electrolyte material includes a compound of the composition Na10MP2S12, wherein M is selected from Ge, Si, and Sn. The material may have a conductivity of at least 1.0×10−5 S/cm at a temperature of about 300K and may have a tetragonal microstructure, e.g., a skewed P1 crystallographic structure. Also provided are an electrochemical cell that includes the sodium-conductive solid-state electrolyte material and a method for producing the sodium-conductive solid electrolyte material via controlled thermal processing parameters.
摘要:
Embodiments related to electroactive compounds, their methods of manufacture, and use are described. In one embodiment, an electroactive compound may include Na(FeaX1-a)O2. X includes at least one of Ti, V, Cr, Mn, Co, Ni, and a is greater than 0 and less than or equal to 0.4. In another embodiment, an electroactive compound may include Na(MnwFexCoyNiz)O2, where w, x, y, and z are greater than 0. Further, a sum of w, x, y, and z is equal to 1 in some cases.
摘要:
Solid electrolyte materials as well as their applications and methods of manufacture are disclosed. In one embodiment, a solid electrolyte material has a formula of A3+δCl1−δBδO, where δ is greater than 0. In the above formula, A is at least one of Li and Na, and B is at least one of S, Se, and N. In another embodiment, a solid electrolyte material is a crystal structure having the general formula A3XO, where A is at least one of Li and Na. Additionally, X is Cl, at least a portion of which is substituted with at least one of S, Se, and N. The solid electrolyte material also includes interstitial lithium ions and/or interstitial sodium ions located in the crystal structure.
摘要:
Embodiments related to electroactive compounds, their methods of manufacture, and use are described. In one embodiment, an electroactive compound may include Na(FeaX1-a)O2. X includes at least one of Ti, V, Cr, Mn, Co, Ni, and a is greater than 0 and less than or equal to 0.4. In another embodiment, an electroactive compound may include Na(MnwFexCoyNiz)O2, where w, x, y, and z are greater than 0. Further, a sum of w, x, y, and z is equal to 1 in some cases.
摘要:
An energy storage device configured to exchange energy with an external device includes a container having walls, a lid covering the container and having a safety pressure valve, a negative electrode disposed away from the walls of the container, a positive electrode in contact with at least a portion of the walls of the container, and an electrolyte contacting the negative electrode and the positive electrode at respective electrode/electrolyte interfaces. The negative electrode, the positive electrode and the electrolyte include separate liquid materials within the container at an operating temperature of the battery.