Abstract:
A PCM comprises a basic target torque-deciding part for deciding a basic target torque, based on a driving state of a vehicle including an accelerator pedal operation state, a torque reduction amount-deciding part for deciding a torque reduction amount, based on a driving state of the vehicle other than the accelerator pedal operation state, a final target torque-deciding part for deciding a final target torque, based on the decided basic target torque and the decided torque reduction amount, and an engine output control part for controlling an engine to cause the engine to output the decided final target torque, wherein the engine output control part is operable to prohibit switching of an operation mode of the engine from being performed simultaneously with control of the engine according to a change in the final target torque corresponding to a change in the torque reduction amount.
Abstract:
The turbocharged engine control device comprises a basic target torque-deciding part for deciding a basic target torque based on a driving state of a vehicle including an accelerator pedal operation state; a torque reduction amount-deciding part for deciding a torque reduction amount based on a driving state of the vehicle other than the accelerator pedal operation state; a final target torque-deciding part for deciding a final target torque based on the decided basic target torque and the decided torque reduction amount; and an engine output control part for controlling the engine so as to cause the engine to output the decided final target torque, wherein the engine output control part is operable, when an operating state of the engine falls within a supercharging region where supercharging by a compressor, to restrict control of the engine corresponding to a change in the torque reduction amount.
Abstract:
A control unit performs a vehicle attitude control to reduce a torque generated by an engine when an increase in a steering angle exceeds a standard increase, and a spark ignition controlled compression ignition combustion in a predetermined operating range. In the spark ignition controlled compression ignition combustion, switching of an air-fuel ratio mode is performed between a first air-fuel ratio mode (λ>1) is formed and a second air-fuel ratio mode (in which a mixed gas of λ≤1) is formed. If the switching of the air-fuel ratio mode is requested without the vehicle attitude control, the control unit allows performing the requested switching of the air-fuel ratio mode. In contrast, if the mode switching is requested in a state where the vehicle attitude control is requested, the control unit disallows switching of the air-fuel ratio mode even when the switching of the air-fuel ratio mode is requested.
Abstract:
When an incremental amount of a steering angle exceeds a reference incremental amount, an ECU 60 executes vehicle attitude control of reducing an output torque of an engine, and, in a given operating range, drives a spark plug 16 to allow an air-fuel mixture to be self-ignited at a given timing, thereby executing SPCCI combustion. When there is a request for an additional deceleration from the vehicle attitude control (#12: YES) and the SPCCI combustion is performed (#13: YES), the ECU 60 prohibits ignition retardation and performs torque reduction for the vehicle attitude control, by fuel amount reduction control of reducing the amount of fuel to be supplied into a cylinder 2 (#14). On the other hand, when the SPCCI combustion is not performed (NO in #13), the ECU 60 performs the ignition retardation to attain the torque reduction for the vehicle attitude control (#15).
Abstract:
The turbocharged engine control device comprises a basic target torque-deciding part for deciding a basic target torque based on a driving state of a vehicle including an accelerator pedal operation state; a torque reduction amount-deciding part for deciding a torque reduction amount based on a driving state of the vehicle other than the accelerator pedal operation state; a final target torque-deciding part for deciding a final target torque based on the decided basic target torque and the decided torque reduction amount; and an engine output control part for controlling an intake air amount so as to realize a target air amount required for an engine to output the decided final target torque, wherein the engine output control part is operable, when an operating state of the engine falls within a supercharging region, to restrict a reduction in the intake air amount corresponding to a change in the torque reduction amount.
Abstract:
An engine control method includes a step of setting combustion mode in which a first combustion mode in which a mixed gas is combusted by propagating flame or a second combustion mode in which the mixed gas is combusted by self-ignition is selected, a step of setting air-fuel ratio mode in which a lean first air-fuel ratio mode or a second air-fuel ratio mode equal to or richer than a theoretical air-fuel ratio is selected, a step of setting torque reduction in which a torque reduction amount by which a torque generated by an engine is reduced based on a steer angle of a steering wheel, and a suppressing step in which reducing the torque generated by the engine based on the torque reduction amount set in the step of setting torque reduction is suppressed.
Abstract:
The engine control device comprises a basic target torque-deciding part for deciding a basic target torque based on a driving state of a vehicle, a torque reduction amount-deciding part for deciding a torque reduction amount based on a steering wheel operation state, an TCM for deciding a torque-down demand amount, based on a driving state of the vehicle other than the steering wheel operation state, and a final target torque-deciding part for deciding a final target torque, based on the decided basic target torque, the decided torque reduction amount and the decided torque-down demand amount, wherein the final target torque-deciding part is operable, when there is a torque-down demand, to restrict a change in the final target torque corresponding to a change in the torque reduction amount.
Abstract:
There is provided a vehicle driving support device including: a change amount calculating part 10 that calculates a first correlation value correlated to a change amount of acceleration of a vehicle; a jerk calculating part 11 that calculates a second correlation value correlated to a jerk of the vehicle; and an operation state determining part 13 that determines a driving operation state of the vehicle from a first correlation value calculated by a change amount calculating part 10, and a second correlation value calculated by a jerk calculating part 11, in accordance with a determination reference previously set from a ratio of a kinetic energy of a mass point to the change amount of the acceleration of the vehicle at an end point of change when the acceleration of the vehicle is changed, calculated using a vibration model showing a movement of the mass point in a passenger compartment.