Abstract:
A comb drive includes an inactive comb finger array and an opposing active comb finger array positioned to oppose the inactive comb finger array and configured to move in a non-linear path relative to the inactive comb finger array, wherein each comb finger array includes a comb spine and a plurality of comb fingers extending from its comb spine, and each comb finger on the active comb finger array is shaped to match a non-parallel profile. The non-parallel profile may be tapered, curved, or selected to linearize the capacitance in a gap between adjacent comb fingers from the inactive comb finger array when a comb finger from the active comb finger array moves through the gap.
Abstract:
An apparatus is provided. The apparatus includes a bidirectional comb drive actuator. The apparatus may also include a cantilever. The cantilever includes a first end connected to the bidirectional comb drive actuator and a second end connected to an inner frame. In addition, the cantilever may include first and second conductive layers for routing electrical signals. Embodiments of the disclosed apparatuses, which may include multi-dimensional actuators, allow for an increased number of electrical signals to be routed to the actuators. Moreover, the disclosed apparatuses allow for actuation multiple directions, which may provide for increased control, precision, and flexibility of movement. Accordingly, the disclosed embodiments provide significant benefits with regard to optical image stabilization and auto-focus capabilities, for example in size- and power-constrained environments.
Abstract:
A MEMS actuator including buckled flexures and a method of assembling the actuator are described. The assembled MEMS actuator includes an inner frame; an outer frame including latched electrical bars, where a first of the latched bars includes a latch protrusion secured to a corresponding latch groove of a second of the latched bars; and buckled flexures coupling the inner frame to the outer frame. The flexures are buckled during assembly of the MEMS actuator by incorporating the electrical bar latching mechanism into the design of the outer frame of the MEMS actuator. In one implementation, the MEMS actuator is assembled by providing a MEMS actuator with unbuckled flexures coupling the outer frame of the MEMS actuator to an inner frame of the MEMS actuator, where the outer frame includes unlatched electrical bars, and latching the electrical bars of the outer frame, resulting in buckled flexures.
Abstract:
A flexure includes a support first end connected to a first frame; a support second end connected to a second frame; and a buckled section connecting the first support end to the second support end. The length of the flexure is substantially greater than its width, and the width of the flexure is substantially greater than its thickness. During operation, the flexure is maintained in a buckled state where the flexure's stiffness is significantly less than in the unbuckled state. In one implementation, a stage includes a flexure array joining a first frame and a second frame, where: the first frame and the second frame are substantially on a plane; the flexure array is substantially on the plane prior to buckling by the flexures of the flexure array; and the flexure array is bent substantially out of the plane after buckling by the flexures.
Abstract:
A simplified MEMS fabrication process and MEMS device is provided that allows for cheaper and lighter-weight MEMS devices to be fabricated. The process comprises etching a plurality of holes or other feature patterns into a MEMS device, and then etching away the underlying wafer such that, after the etching process, the MEMS device is the required thickness and the individual die are separated, avoiding the extra steps of wafer thinning and die dicing. By etching trenches into the substrate wafer and filling them with a MEMS base material, sophisticated taller MEMS devices with larger force may be made.
Abstract:
Systems and methods provide accurate pixel depth information to be applied to a single image taken by a single camera in generating a three-dimensional (3D) image. In particular, two or more images can be captured during, e.g., lateral movement of a camera to ascertain depth in a scene on a pixel level. Use of an optical image stabilization (OIS) system that can provide at least three axes of stabilization eliminates the variability associated with conventional systems that create problems with image registration. Further still, and because actual pixel depth information is being calculated rather than merely generating stereoscopic images to trick the eyes into perceiving depth, the pixel depth information that is calculated can be leveraged in other ways, such as for providing automated measurements merely by taking a picture of an object or scene.
Abstract:
A moving image sensor package is provided that may be used to provide optical image stabilization (OIS) in the same form factor as non-OIS enabled image sensors utilized in portable/mobile devices. The moving image sensor package includes an image sensor attached to a MEMS actuator mounted within a cutout in a circuit board, wherein the MEMS actuator has substantially the same thickness as the circuit board.
Abstract:
Systems and methods provide dust removal on an image sensor surface of a digital camera. Dust removal can be achieved by either imparting vibrational movement on a stage upon which the image sensor is mounted and/or by moving the stage towards one or more impact stops. The vibrational movement may shake loose any contaminants present on the image sensor. The impact of the stage at the one or more impact stops also may shake loose any contaminants present on the image sensor.
Abstract:
A system and method for manipulating the structural characteristics of a MEMS device include etching a plurality of holes into the surface of a MEMS device, wherein the plurality of holes comprise one or more geometric shapes determined to provide specific structural characteristics desired in the MEMS device.
Abstract:
Systems and methods are provided for super-resolution imaging using 3-axis OIS. A super-resolution image may be created by enabling optical image stabilization (OIS) in three axes using an OIS system on a camera of an image capturing device; capturing an image of a scene using an image sensor of the camera; shifting the image on the image sensor by a predetermined subpixel amount; capturing the subpixel shifted image; and constructing a super-resolution image of the scene using the image and the subpixel shifted image. In one particular implementation, a position sensor may measure a positional drift of the image sensor after capturing the image. Using this measured positional drift, a time sufficient to shift the image sensor by a predetermined subpixel amount may be determined. The OIS may subsequently be disabled in one or two axes for the determined time.