Abstract:
A pressure-sensing device including a pressed component that has a contact surface to which pressure is applied by contact from a presser; a polymeric piezoelectric element that is disposed at an opposite side from the contact surface of the pressed component and that has a piezoelectric constant d14 of 1 pC/N or more as measured at 25° C. using a stress-charge method; a curable resin layer that includes at least one selected from the group consisting of cold-setting resins, thermosetting resins, and actinic radiation-curable resins and that is in contact with at least part of a surface of the polymeric piezoelectric element; and an electrode that is in contact with at least part of a surface of the polymeric piezoelectric element or of a surface of the curable resin layer.
Abstract:
A polymeric piezoelectric material is provided that includes an aliphatic polyester (A) with a weight-average molecular weight of from 50,000 to 1,000,000 and having optical activity, and a stabilizing agent (B) with a weight-average molecular weight of from 200 to 60,000 having at least one kind of functional group selected from the group consisting of a carbodiimide group, an epoxy group and an isocyanate group, wherein the crystallinity of the material obtained by a DSC method is from 20% to 80%, a content of the stabilizing agent (B) is from 0.01 part by mass to 10 parts by mass with respect to 100 parts by mass of the aliphatic polyester (A), and internal haze with respect to visible light is 50% or less, as well as a process for producing the same.
Abstract:
A piezoelectric substrate attachment structure including a press section pressed by contact, a piezoelectric substrate provided adjacent to the press section, and a base section provided adjacent to the piezoelectric substrate on an opposite side from the press section. The following relationship Equation (a) is satisfied: da/E′a
Abstract:
Provided is a piezoelectric substrate including: an elongate conductor; and an elongate first piezoelectric material helically wound in one direction around the conductor, in which the first piezoelectric material includes an optically active helical chiral polymer (A), the lengthwise direction of the first piezoelectric material and the principal orientation direction of the helical chiral polymer (A) included in the first piezoelectric material are substantially parallel to each other, and the first piezoelectric material has an orientation degree of F in a range of from 0.5 to less than 1.0, determined from X-ray diffraction measurement by the following Formula (a): orientation degree F.=(180°−α)/180° (a) (in Formula (a), α represents a half width of a peak derived from orientation).
Abstract:
Provided is: an elongated plate-form piezoelectric body, which contains an optically active helical chiral polymer (A) having a weight-average molecular weight of from 50,000 to 1,000,000 and has an elongated plate shape having a thickness of from 0.001 mm to 0.2 mm, a width of from 0.1 mm to 30 mm and a width-to-thickness ratio of 2 or higher, and in which the lengthwise direction and the main orientation direction of the helical chiral polymer (A) are substantially parallel to each other; the crystallinity measured by a DSC method is from 20% to 80%; and the birefringence is from 0.01 to 0.03.
Abstract:
A layered body including a crystalline polymeric piezoelectric body, which is molecularly oriented, and a surface layer, in which the relationship between the tensile modulus Ec (GPa) and the thickness d (μm) satisfies the following Formula (A): 0.6≦Ec/d Formula (A).
Abstract:
Provided is a piezoelectric substrate, containing an elongate piezoelectric body that is helically wound, in which the piezoelectric body includes an optically active polypeptide, a length direction of the piezoelectric body and a main orientation direction of the optically active polypeptide included in the piezoelectric body are substantially parallel to each other, and the piezoelectric body has a degree of orientation F of from 0.50 to less than 1.00, as determined from X-ray diffraction measurement by the following Formula (a): Degree of orientation F=(180°−α)/180° (a) in Formula (a), α represents a half width (°) of a peak derived from orientation.
Abstract:
A piezoelectric substrate attachment structure including a cable-shaped piezoelectric substrate, a press section provided adjacent to the piezoelectric substrate and pressed from an opposite side from the piezoelectric substrate, and a base section provided adjacent to the piezoelectric substrate on an opposite side from the press section. A ratio Eb/Ea of a Young's modulus Eb of the base section to a Young's modulus Ea of the press section being 10−1 or lower.
Abstract:
A polymeric piezoelectric film, including a helical chiral polymer (A) having a weight average molecular weight of from 50,000 to 1,000,000 and optical activity, in which, in the film: a crystallinity given by a DSC method is from 20% to 80%; a standardized molecular orientation MORc is from 3.5 to 15.0 when a reference thickness measured by a microwave transmission-type molecular orientation meter is 50 μm; and when a direction parallel to a phase difference streak is a direction X, a direction perpendicular to the direction X and parallel to a main plane of a film is a direction Y, and the phase difference streak is evaluated by an evaluation method A, per a length of 1,000 mm in the direction Y, a number of phase difference streaks with an evaluation value of 60 or more is 0, and a sum of the evaluation values of phase difference streaks with an evaluation value of 20 or more is 1000 or less.
Abstract:
A polymeric piezoelectric material, comprising at least two regions: a region H, which is an oriented polymeric piezoelectric region that includes an optically active helical chiral polymer (A) having a weight average molecular weight of from 50,000 to 1,000,000, the region H having a crystallinity of from 20% to 80% and having a standardized molecular orientation-of from 3.5 to 15.0; and a region L, which is a low orientation region that includes the optically active helical chiral polymer (A) having a weight average molecular weight of from 50,000 to 1,000,000, the region L being present near at least part of an end portion of the region H, having an average width when viewed from a normal direction with respect to the principal plane of the region H of from 10 μm to 300 μm, and having a retardation is 100 nm or less.