Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. Devices may be formed in the silicon wafer prior to growing the high quality epitaxial layers. Then, to achieve the formation of a compliant substrate, an accommodating buffer layer is grown on silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Compound devices are then formed on the overlying monocrystalline layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials. Silicon devices and circuits (e.g., CMOS circuits) in the silicon wafer are wired to the compound devices (e.g., MESFETs, HBTs, HEMTs, PHEMTs, etc.), forming an electrical connection therebetween.
Abstract:
A semiconductor laminate configured for dividing into predetermined parts has a lateral expanse and includes: (a) a monocrystalline substrate substantially coterminous with the lateral expanse; (b) at least one layer including a monocrystalline compound semiconductor material; and (c) at least one intermediate layer substantially separating the substrate and the compound semiconductor material. The at least one compound semiconductor material layer is arrayed to present intervals substantially devoid of the monocrystalline compound semiconductor material that generally establish lateral limits of the predetermined parts. The method includes the steps of: (a) providing a monocrystalline substrate; (b) providing at least one layer including a monocrystalline compound semiconductor material; (c) providing at least one intermediate layer separating the substrate and the compound semiconductor material; and (d) arraying the compound semiconductor material to present intervals substantially devoid of the compound semiconductor material that generally establish lateral limits of the predetermined parts.
Abstract:
Electromechanical resonating devices such as MEMS resonators are provided in semiconductor structures and devices having high-quality monocrystalline semiconductor layers formed by utilizing compliant substrates. The semiconductor layer is patternwise etched to define a vibrational mode resonator member with one or more supports mechanically coupled to the member. A portion beneath the member is etched to provide clearance for vibrational mode operation of the resonating member. The semiconductor layer is selectively doped to define one or more conductive pathways to the resonating member.