Abstract:
A semiconductor apparatus for effecting a plurality of functions involving high frequency signals and low frequency signals includes: (a) at least one first circuit section implemented in at least one first semiconductor material; and (b) at least one second circuit section implemented in at least one second semiconductor material. The at least one second semiconductor material exhibits lower noise generating characteristics than the at least one first semiconductor material at the low frequency signals. The at least one first circuit section and the at least one second circuit section are implemented in an integrated circuit construction. Preferably the integrated circuit construction is a monolithic configuration. Preferably the at least one first semiconductor material includes gallium arsenide. Preferably the at least one second semiconductor material includes silicon.
Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials. The fabrication of on chip high frequency communications devices such as direct conversion and sampling circuits with direct interface to high speed compound semiconductor material in integrated circuits for high speed data acquisition and CCD image sensor interface is disclosed for direct coupling of imaging signals in single chip applications.
Abstract:
High quality layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials. The use of monocrystalline piezoelectric material as an overlying layer is disclosed to facilitate the fabrication of on-chip high frequency communications devices such as microwave SAW devices with direct interface to high speed semiconductor devices in the integrated circuit.
Abstract:
A semiconductor laminate configured for dividing into predetermined parts has a lateral expanse and includes: (a) a monocrystalline substrate substantially coterminous with the lateral expanse; (b) at least one layer including a monocrystalline compound semiconductor material; and (c) at least one intermediate layer substantially separating the substrate and the compound semiconductor material. The at least one compound semiconductor material layer is arrayed to present intervals substantially devoid of the monocrystalline compound semiconductor material that generally establish lateral limits of the predetermined parts. The method includes the steps of: (a) providing a monocrystalline substrate; (b) providing at least one layer including a monocrystalline compound semiconductor material; (c) providing at least one intermediate layer separating the substrate and the compound semiconductor material; and (d) arraying the compound semiconductor material to present intervals substantially devoid of the compound semiconductor material that generally establish lateral limits of the predetermined parts.