Abstract:
Methods of managing gate coupling for semiconductor devices, e.g., non-volatile memory devices, are provided. The methods include: providing a conductive layer on a semiconductor substrate, the conductive layer including a lower conductive layer and an upper conductive layer, the lower conductive layer including a first material and the upper conductive layer including a second material having at least one property different from the first material, forming a protective pattern on the conductive layer, and etching through the conductive layer to obtain individual separated gates by controlling an etching process such that the first material has a higher etching rate than the second material during the etching process, each of the gates including an upper gate and a lower gate, the lower gate having a smaller width than the upper gate after the etching process.
Abstract:
A method for fabricating a semiconductor device includes: forming a first trench and a wider second trench in a substrate and a material layer formed thereon, forming a flowable isolation material covering the material layer and filling in the first and second trenches, removing a portion of the flowable isolation material in the second trench so that the thickness of the remaining flowable isolation material on the sidewall of the second trench is 200 Å to 1000 Å, and forming a non-flowable isolation material on the flowable isolation material.
Abstract:
Provided is a memory device including a substrate, a stack structure on the substrate, a contact, and a supporting pillar. The stacked structure includes a plurality of conductive layers and a plurality of insulating layers stacked alternately on each other. The contact is connected to one of the plurality of conductive layers of the stack structure. The supporting pillar penetrates the stack structure and is disposed around the contact. The supporting pillar includes a body portion and a plurality of extension portions. The body portion is arranged around a first side of the contact. The plurality of extension portions are located on two sides of the body portion. A length of each of the extension portions is greater than a width of the contact, and one of the extension portions is disposed around a second side of the contact.
Abstract:
Various embodiments provide a self-merged profile (SMP) method for fabricating a semiconductor device and a device fabricated using an SMP method. In an example embodiment, a semiconductor device is provided. The example semiconductor device comprises (a) a plurality of conductive lines; (b) a plurality of conductive pads; (c) a plurality of dummy tails; and (d) a plurality of closed loops. Each of the plurality of conductive pads is associated with one of the plurality of conductive lines, one of the plurality of dummy tails, and one of the plurality of closed loops. In example embodiments, the plurality of dummy tails and the plurality of closed loops are formed as residuals of the process used to create the plurality of conductive lines and the plurality of conductive pads.
Abstract:
Provided is a memory device including a substrate, a stack structure on the substrate, a contact, and a supporting pillar. The stacked structure includes a plurality of conductive layers and a plurality of insulating layers stacked alternately on each other. The contact is connected to one of the plurality of conductive layers of the stack structure. The supporting pillar penetrates the stack structure and is disposed around the contact. The supporting pillar includes a body portion and a plurality of extension portions. The body portion is arranged around a first side of the contact. The plurality of extension portions are located on two sides of the body portion. A length of each of the extension portions is greater than a width of the contact, and one of the extension portions is disposed around a second side of the contact.
Abstract:
Various embodiments provide a self-merged profile (SMP) method for fabricating a semiconductor device and a device fabricated using an SMP method. In an example embodiment, a semiconductor device is provided. The example semiconductor device comprises (a) a plurality of conductive lines; (b) a plurality of conductive pads; (c) a plurality of dummy tails; and (d) a plurality of closed loops. Each of the plurality of conductive pads is associated with one of the plurality of conductive lines, one of the plurality of dummy tails, and one of the plurality of closed loops. In example embodiments, the plurality of dummy tails and the plurality of closed loops are formed as residuals of the process used to create the plurality of conductive lines and the plurality of conductive pads.
Abstract:
Provided are improved semiconductor memory devices and methods for manufacturing such semiconductor memory devices. A method may incorporate the formation of a first dielectric layer over buried oxide regions and the removal of such dielectric layer to prepare a substantially planar substrate for subsequent formation of word lines. The method may allow for the production of semiconductor memory devices of reduced size with reduced word line stringer residual material.
Abstract:
Provided is a method for fabricating a memory device. A stack layer, including a storage layer, a first conductive layer and a first mask layer, is formed on the substrate in a first region and a second region. The stack layer is patterned to form a plurality of first patterned stack layers extending along a first direction and from the first region to the second region. Two sides of each first patterned stack layers have openings respectively. A filling layer is formed on the substrate, and filled in the openings. A second mask layer is formed on the second region, and does not cover the filling layer in the second region. Then, using the second mask layer and the filling layer as mask, the first patterned stack layers and part of the substrate are removed, and a plurality of trenches are formed in the substrate in the second region.