摘要:
One or more computers are configured to determine a human stress condition corresponding to one or more physical or physiological parameters extracted from one or more micro-impulse radar (MIR) signals.
摘要:
One or more human attributes extracted from a micro-impulse radar (MIR) signal is correlated to a temporary identity or phenotypic identity of a person.
摘要:
A micro-impulse radar (MIR) may be configured to provide information about at least one person in a region. A media output device may be driven responsive to the information to output media content to the at least one person.
摘要:
A computer or entertainment system is configured to respond to data received from a micro impulse radar configured to detect movement, physiology, posture, presence, and/or absence of a person in one or more regions near the computer or entertainment system.
摘要:
A system and method for providing media and/or advertising content determines content and/or parameters responsive to physical and/or physiological information about a viewer detected by a micro-impulse radar (MIR).
摘要:
One or more micro-impulse radars (MIRs) are configured to determine the movement of at least one person. Media can be output to the person responsive to the movement.
摘要:
Devices, compositions, and methods are described which provide a tubular nanostructure targeted to a lipid bilayer membrane. The targeted tubular nanostructure can have a surface region configured to pass through a lipid bilayer membrane of a cell, a hydrophobic surface region flanked by two hydrophilic surface regions configured to form a pore in a lipid bilayer membrane of a cellular organelle, and at least one ligand configured to bind one or more cognates on the lipid bilayer membrane of the cellular organelle. The target cell can be, for example, a tumor cell, an infected cell, or a diseased cell in a subject. The tubular nanostructure can form a pore in the lipid bilayer membrane of the cellular organelle, e.g., mitochondria, which can permit transit or translocation of at least one compound across the membrane and cause cell death of the target cell.
摘要:
Devices, compositions, and methods are described which provide a tubular nanostructure or a composite tubular nanostructure targeted to a lipid bilayer membrane. The tubular nanostructure includes a hydrophobic surface region flanked by two hydrophilic surface regions. The tubular nanostructure is configured to interact with a lipid bilayer membrane and form a pore in the lipid bilayer membrane. The tubular nanostructure may be targeted by including at least one ligand configured to bind to one or more cognates on the lipid bilayer membrane of a target cell.
摘要:
Devices, compositions, and methods are described which provide a tubular nanostructure targeted to a lipid bilayer membrane. The targeted tubular nanostructure can have a surface region configured to pass through a lipid bilayer membrane of a cell, a hydrophobic surface region flanked by two hydrophilic surface regions configured to form a pore in a lipid bilayer membrane of a cellular organelle, and at least one ligand configured to bind one or more cognates on the lipid bilayer membrane of the cellular organelle. The target cell can be, for example, a tumor cell, an infected cell, or a diseased cell in a subject. The tubular nanostructure can form a pore in the lipid bilayer membrane of the cellular organelle, e.g., mitochondria, which can permit transit or translocation of at least one compound across the membrane and cause cell death of the target cell.
摘要:
Devices, compositions, and methods are described which provide a tubular nanostructure or a composite tubular nanostructure targeted to a lipid bilayer membrane. The tubular nanostructure includes a hydrophobic surface region flanked by two hydrophilic surface regions. The tubular nanostructure is configured to interact with a lipid bilayer membrane and form a pore in the lipid bilayer membrane. The tubular nanostructure may be targeted by including at least one ligand configured to bind to one or more cognates on the lipid bilayer membrane of a target cell.