摘要:
A bipolar plate to reduce electrical contact resistance between the plate and a diffusion layer used in a fuel cell. The opposing surfaces of the plate define flow channels with upstanding lands interspersed between them. The lands of the plate form an electrically-conductive contact with a diffusion layer in the fuel cell. At least a portion of the electrically-conductive contact is made up of a nickel-based alloy that reduces the contact resistance between the plate and the diffusion layer as a way to achieve improved electric current density. In one form, the alloy can be used as the primary material in the plate, while in another, it can be used as a coating deposited onto a conventional stainless steel plate.
摘要:
A bipolar plate to reduce electrical contact resistance between the plate and a diffusion layer used in a fuel cell. The opposing surfaces of the plate define flow channels with upstanding lands interspersed between them. The lands of the plate form an electrically-conductive contact with a diffusion layer in the fuel cell. At least a portion of the electrically-conductive contact is made up of a nickel-based alloy that reduces the contact resistance between the plate and the diffusion layer as a way to achieve improved electric current density. In one form, the alloy can be used as the primary material in the plate, while in another, it can be used as a coating deposited onto a conventional stainless steel plate.
摘要:
A fuel cell includes a first valve metal flow field plate. The first valve metal flow field plate has a first cooling channel adapted to receive an aqueous coolant and to contact the aqueous coolant at a position that inhibits the formation of shunt currents when the fuel cell is incorporated in a fuel cell stack. A field assembly includes a first metal flow field plate having a first cooling channel adapted to receive an aqueous coolant is also provided. A valve metal plate is disposed over the first metal flow field plate in the flow field assembly. Fuel cell stacks using the valve metal-containing flow field plates are also provided.
摘要:
One exemplary embodiment may include a method comprising: depositing a solution comprising an organometallic compound on a substrate, drying the solution to provide a film of the organometallic compound and at least partially oxidizing an organic component of the organometallic compound to provide nanoparticles including metal oxides on the substrate which would have multiuse industrial applications.
摘要:
One exemplary embodiment includes a fuel cell component having comprising a carbon chain, and a material grafted to the coating/surface, wherein the material includes ionic or polar groups. One embodiment includes composite plates which include carbon that can be activated and treated to make their surface hydrophilic.
摘要:
One exemplary embodiment of the invention includes a method including providing a bipolar plate for a fuel cell having a reactant gas flow field defined therein by a plurality of lands and at least one channel, and depositing a low contact resistant material selectively over portions of the lands leaving portions of the lands uncovered by the low contact resistant material.
摘要:
A fuel cell component includes an electrode support material made with nanofiber materials of Titania and ionomer. A bipolar plate stainless steel substrate and a carbon-containing layer doped with a metal selected from the group consisting of platinum, iridium, ruthenium, gold, palladium, and combinations thereof.
摘要:
A flow field plate for fuel cell applications includes a metal with a non-crystalline carbon layer disposed over at least a portion of the metal plate. The non-crystalline carbon layer includes an activated surface which is hydrophilic. Moreover, the flow field plate is included in a fuel cell with a minimal increase in contact resistance. Methods for forming the flow field plates are also provided.
摘要:
One exemplary embodiment may include a method comprising: depositing a solution comprising an organometallic compound on a substrate, drying the solution to provide a film of the organometallic compound and at least partially oxidizing an organic component of the organometallic compound to provide nanoparticles including metal oxides on the substrate which would have multiuse industrial applications.