Abstract:
A semiconductor device includes a fine interconnection structure with low resistance at a through hole. A first interconnection is formed on a surface of a first layer insulating film. The first interconnection is tapered. An insulating layer is formed on the first interconnection and the first insulating film, and has a through hole that exposes an upper surface and a portion of a side surface of the first interconnection. The insulating layer covers a conductive portion of the first interconnection within the through hole. A second interconnection is provided over the insulating layer, and is electrically connected to the first interconnection through the through hole.
Abstract:
An adhesion layer for causing a plug for electrically connecting a lower wiring and an upper wiring opposite to each other with an interlayer insulating film interposed therebetween to adhere to the interlayer insulating film is formed within a through hole for forming the plug, based on a predetermined aspect ratio represented by a ratio of a depth dimension of the through hole to a diameter dimension of the through hole.
Abstract:
An actuator includes a mass section; a support section; a coupling section for coupling the mass section rotatably to the support section so as to support the mass section with cantilever structure; and a pair of driving sources including a piezoelectric element for rotating the mass section, wherein the pair of driving sources are provided separately from each other with respect to a central axis of rotation of the mass section, each of the driving sources is provided slidably with respect to the coupling section or the support section, and the actuator is structured such that it causes the pair of piezoelectric elements to expand and contract in phases opposite to each other, so as to rotate at least a part of the coupling section while torsionally deforming the mass section.
Abstract:
An optical deflector has: a movable plate having a reflecting surface and a side surface; and a support portion that supports the movable plate in such a manner that the movable plate is able to rotate around a predetermined axis, in which the side surface of the movable plate is recessed toward the axis.
Abstract:
A semiconductor device is comprised of a first wire that has a plurality of via holes formed in the vicinity of an end thereof and that is connected to a conductor of a different layer through the via holes, and a plurality of slits that are provided parallel to the direction in which the first wire extends and that split the first wire into a plurality of second wires over a predetermined distance from the end thereof. Another semiconductor device is comprised of a first wire, a second wire that is on a layer different from that of the first wire and that extends in a direction at right angles to the first wire, a connection area where a portion in the vicinity of an end of the first wire intersects with a portion in the vicinity of an end of the second wire, a plurality of first slits that are provided parallel to the direction in which the first wire extends and that divide the first wire into a plurality of third wires over only a predetermined distance from an end of the first wire, and a plurality of second slits that are provided parallel to the direction in which the second wire extends and that divide the second wire into a plurality of fourth wires over only a predetermined distance from an end of the second wire, and a plurality of via holes that are formed in the connection area and that connect the plurality of third wires and the plurality of fourth wires.
Abstract:
A micro electro-mechanical system, which can be stably formed so as to prevent sticking of a movable part and which has a narrow gap, and a method of manufacturing the same are provided. The micro electro-mechanical system includes at least one fixed electrode formed above a principal surface of a semiconductor substrate and at least one movable electrode formed on the principal surface. The at least one movable electrode includes the movable part separated from the principal surface and the at least one fixed electrode. The movable part is movable with respect to the principal surface and the at least one fixed electrode. The method of manufacturing the micro electro-mechanical system includes a sacrifical film formation step for forming a sacrifical film above the principal surface, an electrode layer formation step for forming an electrode layer above the principal surface so as to cover over the sacrifical film, an etching step for partially etching the electrode layer via a pattern so as to form the at least one electrode and the at least one fixed electrode, a sacrifical film removal step for removing the sacrifical film, and a conducting film formation step for forming a conducting film on surfaces of the at least one electrode and the at least one fixed electrode.
Abstract:
The present invention provides a method for manufacturing a semiconductor device which has an integrated circuit provided on a semiconductor substrate and a movable part which is movable relative to the substrate. This manufacturing method includes: a step of covering the movable part with a sacrificial film; a step of covering the sacrificial film with a first sealing layer which is formed of a material having a tensile stress; a step of forming a through-hole in the first sealing layer; a step of removing the sacrificial film through the through-hole to form a void around the movable part; and a step of film-forming a second sealing layer on the first sealing layer to close the through-hole.
Abstract:
A micro electro-mechanical system, which can be stably formed so as to prevent sticking of a movable part and which has a narrow gap, and a method of manufacturing the same are provided. The micro electro-mechanical system includes at least one fixed electrode formed above a principal surface of a semiconductor substrate and at least one movable electrode formed on the principal surface. The at least one movable electrode includes the movable part separated from the principal surface and the at least one fixed electrode. The movable part is movable with respect to the principal surface and the at least one fixed electrode. The method of manufacturing the micro electromechanical system includes a sacrifical film formation step for forming a sacrifical film above the principal surface, an electrode layer formation step for forming an electrode layer above the principal surface so as to cover over the sacrifical film, an etching step for partially etching the electrode layer via a pattern so as to form the at least one electrode and the at least one fixed electrode, a sacrifical film removal step for removing the sacrifical film, and a conducting film formation step for forming a conducting film on surfaces of the at least one electrode and the at least one fixed electrode.
Abstract:
The present invention provides a method of manufacturing a semiconductor device, which is capable of reducing variations in the rate of occurrence of failures at individual connecting portions in the semiconductor device. According to the semiconductor device manufacturing method, a Cu-containing TiN layer, which serves as a cap layer (130 (310)), is formed using a Cu-containing Ti target. Cu contained in the Cu-containing TiN layer is diffused into an Al—Cu wiring (120 (320)) located in a portion electrically connected to an interlayer wiring (200) by heat treatment.
Abstract:
A method for manufacturing a semiconductor device capable of forming a fine interconnection structure without making the resistance at the through hole high is provided. More specifically, a semiconductor device having a first interconnection formed on the surface of a first layer insulating film is provided, and a second interconnection is also provided on the upper part of the first interconnection and is electrically connected to the first interconnection, and wherein the first interconnection is formed so that the width of the lower part is narrower than that of the upper part.