摘要:
The present invention provides a heat treatment method for a silicon wafer in which, with respect to a surface of the silicon wafer made flat at an atomic level by a high-temperature heat-treatment at 1,100° C. or more, a surface roughness of the wafer can be reduced compared with the conventional one while maintaining a step terrace structure on the surface of the above-mentioned wafer, and the surface of such a wafer can be formed stably. In the heat treatment method for the silicon wafer in which the step terrace structure is formed on the surface of the silicon wafer, after the silicon wafer is heat treated at 1,100° C. or more in a heat treatment furnace in a reducing gas or inert gas atmosphere, the atmosphere in the furnace is arranged to be of argon gas at a temperature of 500° C. or more in the furnace when reducing the temperature and argon gas continues to be introduced into the furnace until the silicon wafer is removed from the furnace, so that the step terrace structure on the surface of the above-mentioned silicon wafer may be maintained and a root mean square roughness Rms per 3 μm×3 μm may be 0.06 nm or less.
摘要:
A silicon wafer for preventing a void defect in a bulk region from becoming source of contamination and slip generation in a device process is provided. And a heat-treating method thereof for reducing crystal defects such as COP in a region near the wafer surface to be a device active region is provided. The silicon wafer has a surface region 1 which is a defect-free region and a bulk region 2 including void defect of a polyhedron whose basic shape is an octahedron in which a corner portion of the polyhedron is in the curved shape and an inner-wall oxide film the void defect is removed. The silicon wafer is provided by performing a heat-treating method in which gas to be supplied, inner pressure of spaces and a maximum achievable temperature are set to a predetermined value when subjecting the silicon wafer produced by a CZ method to RTP.
摘要:
The invention is to provide a method for heat treating a silicon wafer reducing grown-in defects while suppressing generation of slip during RTP and improving surface roughness of the wafer. The method performing a first heat treatment while introducing a rare gas, the first heat treatment comprising the steps of rapidly heating the wafer to T1 of 1300° C. or higher and the melting point of silicon or lower, keeping the wafer at T1, rapidly cooling the wafer to T2 of 400-800° C. and keeping the wafer at T2; and performing a second heat treatment while introducing an oxygen gas in an amount of 20-100 vol. %, the second heat treatment comprising the steps of keeping the wafer at T2, rapidly heating the wafer from T2 to T3 of 1250° C. or higher and the melting point of silicon or lower, keeping the wafer at T3 and rapidly cooling the wafer.
摘要:
The invention is to provide a method for heat treating a silicon wafer reducing grown-in defects while suppressing generation of slip during RTP and improving surface roughness of the wafer. The method performing a first heat treatment while introducing a rare gas, the first heat treatment comprising the steps of rapidly heating the wafer to T1 of 1300° C. or higher and the melting point of silicon or lower, keeping the wafer at T1, rapidly cooling the wafer to T2 of 400-800° C. and keeping the wafer at T2; and performing a second heat treatment while introducing an oxygen gas in an amount of 20-100 vol. %, the second heat treatment comprising the steps of keeping the wafer at T2, rapidly heating the wafer from T2 to T3 of 1250° C. or higher and the melting point of silicon or lower, keeping the wafer at T3 and rapidly cooling the wafer.
摘要:
A silicon wafer produced from a silicon single crystal ingot grown by Czochralski process is subjected to rapid heating/cooling thermal process at a maximum temperature (T1) of 1300° C. or more, but less than 1380° C. in an oxidizing gas atmosphere having an oxygen partial pressure of 20% or more, but less than 100%. The silicon wafer according to the invention has, in a defect-free region (DZ layer) including at least a device active region of the silicon wafer, a high oxygen concentration region having a concentration of oxygen solid solution of 0.7×1018 atoms/cm3 or more and at the same time, the defect-free region contains interstitial silicon in supersaturated state.
摘要翻译:将通过切克劳斯基法生长的硅单晶锭制成的硅晶片在氧化气体气氛中在1300℃以上但小于1380℃的最高温度(T1)下进行快速加热/冷却热处理 氧分压为20%以上但小于100%。 根据本发明的硅晶片在至少包括硅晶片的器件有源区的无缺陷区(DZ层)中具有0.7×10 18原子/ cm 3的氧固溶体浓度的高氧浓度区域 以上,同时无缺陷区域含有过饱和状态的间隙硅。
摘要:
A silicon wafer produced from a silicon single crystal ingot grown by Czochralski process is subjected to rapid heating/cooling thermal process at a maximum temperature (T1) of 1300° C. or more, but less than 1380° C. in an oxidizing gas atmosphere having an oxygen partial pressure of 20% or more, but less than 100%. The silicon wafer according to the invention has, in a defect-free region (DZ layer) including at least a device active region of the silicon wafer, a high oxygen concentration region having a concentration of oxygen solid solution of 0.7×1018 atoms/cm3 or more and at the same time, the defect-free region contains interstitial silicon in supersaturated state.
摘要翻译:将通过切克劳斯基法生长的硅单晶锭制成的硅晶片在氧化气体气氛中在1300℃以上但小于1380℃的最高温度(T1)下进行快速加热/冷却热处理 氧分压为20%以上但小于100%。 根据本发明的硅晶片在至少包括硅晶片的器件有源区的无缺陷区(DZ层)中具有0.7×10 18原子/ cm 3的氧固溶体浓度的高氧浓度区域 以上,同时无缺陷区域含有过饱和状态的间隙硅。
摘要:
In a method of heat treating a wafer obtained by slicing a silicon single crystal ingot manufactured by the Czochralski method, a rapid heating/cooling heat treatment is carried out by setting a holding time at an ultimate temperature of 1200° C. or more and a melting point of silicon or less to be equal to or longer than one second and to be equal to or shorter than 60 seconds in a mixed gas atmosphere containing oxygen having an oxygen partial pressure of 1.0% or more and 20% or less and argon, and an oxide film having a thickness of 9.1 nm or less or 24.3 nm or more is thus formed on a surface of the silicon wafer.
摘要:
A silicon wafer for preventing a void defect in a bulk region from becoming source of contamination and slip generation in a device process is provided. And a heat-treating method thereof for reducing crystal defects such as COP in a region near the wafer surface to be a device active region is provided. The silicon wafer has a surface region 1 which is a defect-free region and a bulk region 2 including void defect of a polyhedron whose basic shape is an octahedron in which a corner portion of the polyhedron is in the curved shape and an inner-wall oxide film the void defect is removed. The silicon wafer is provided by performing a heat-treating method in which gas to be supplied, inner pressure of spaces and a maximum achievable temperature are set to a predetermined value when subjecting the silicon wafer produced by a CZ method to RTP.
摘要:
In a method of heat treating a wafer obtained by slicing a silicon single crystal ingot manufactured by the Czochralski method, a rapid heating/cooling heat treatment is carried out by setting a holding time at an ultimate temperature of 1200° C. or more and a melting point of silicon or less to be equal to or longer than one second and to be equal to or shorter than 60 seconds in a mixed gas atmosphere containing oxygen having an oxygen partial pressure of 1.0% or more and 20% or less and argon, and an oxide film having a thickness of 9.1 nm or less or 24.3 nm or more is thus formed on a surface of the silicon wafer.
摘要:
An image pickup device disposed in a predetermined position relative to a surface of a strained silicon wafer photographs the surface of the strained silicon wafer in a plurality of rotation angle positions on photographing conditions under which bright lines appearing on the surface of the strained silicon wafer can be photographed, in an environment where a light source device illuminates the surface of the strained silicon wafer which is rotating. A composite image in a predetermined angle position is generated from surface images of the strained silicon wafer in a plurality of rotation angle positions obtained by the image pickup device.