摘要:
A sensing insert device (100) is disclosed for measuring a parameter of the muscular-skeletal system. The sensing insert device (100) can be temporary or permanent. The sensing module (200) is a self-contained encapsulated measurement device having at least one contacting surface that couples to the muscular-skeletal system. The sensing module (200) comprises one or more sensing assemblages (1802), electronic circuitry (307), an antenna (2302), and communication circuitry (320). The sensing assemblages (1802) are between a top plate (1502) and a bottom plate (1504) in a sensing platform (121). The bottom plate (1504) is supported by a ledge (1708) on an interior surface of a sidewall (1716) of a housing (1706). A cap (1702) couples to top plate (1502). The cap (1702) is adhesively coupled to the housing (1706). The adhesive is flexible allowing movement of the cap (1702) when a force, pressure, or load is applied thereto.
摘要:
A sensing insert device (100) is disclosed for measuring a parameter of the muscular-skeletal system. The sensing insert device (100) can be temporary or permanent. The sensing module (200) is a self-contained encapsulated measurement device having at least one contacting surface that couples to the muscular-skeletal system. The sensing module (200) comprises one or more sensing assemblages (1802), electronic circuitry (307), an antenna (2302), and communication circuitry (320). The sensing assemblages (1802) are between a top plate (1502) and a bottom plate (1504) in a sensing platform (121). The bottom plate (1504) is supported by a ledge (1708) on an interior surface of a sidewall (1716) of a housing (1706). A cap (1702) couples to top plate (1502). The cap (1702) is adhesively coupled to the housing (1706). The adhesive is flexible allowing movement of the cap (1702) when a force, pressure, or load is applied thereto.
摘要:
A dual-mode closed-loop measurement system (100) for capturing a transit time, phase, or frequency of energy waves propagating through a medium (122) is disclosed. A first module comprises an inductor drive circuit (102), an inductor (104), a transducer (106), and a filter (110). A second module housed in a screw (335) comprises an inductor (114) and a transducer (116). The screw (335) is bio-compatible and allows an accurate delivery of the circuit into the muscular-skeletal system. The inductor can be attached and interconnected on a flexible substrate (331) that fits into a cavity in the screw (335). The first and second modules are operatively coupled together. The first module provides energy to power the second module. The second module emits an energy wave into the medium that propagates to the first module. The transit time of energy waves is measured and correlated to the parameter by known relationship.
摘要:
A spine alignment system is provided to assess load forces on the vertebra in conjunction with overall spinal alignment. The system includes a spine instrument having an electronic assembly and a sensorized head. The sensorized head can be inserted between vertebra and report vertebral conditions such as force, pressure, orientation and edge loading. A GUI is therewith provided to show where the spine instrument is positioned relative to vertebral bodies as the instrument is placed in the inter-vetebral space. The system can distract vertebrae to a first height and measure the load applied by the spine region. The GUI can indicate that the load is outside a predetermined range. The spine region can be distracted to a second height where the load is measured within the predetermined load range.
摘要:
A load balance and alignment system is provided to assess load forces on the vertebra in conjunction with overall spinal alignment. The system includes a spine instrument having an electronic assembly and a sensorized head. The sensorized head can be inserted between vertebra and report vertebral conditions such as force, pressure, orientation and edge loading. A GUI is therewith provided to show where the spine instrument is positioned relative to vertebral bodies as the instrument is placed in the inter-vertebral space. The system can report optimal prosthetic size and placement in view of the sensed load and location parameters including optional orientation, rotation and insertion angle along a determined insert trajectory.
摘要:
A sensing insert device (100) is disclosed for measuring a parameter of the muscular-skeletal system. The sensing insert device (100) can be temporary or permanent. The sensing module (200) is a self-contained encapsulated measurement device having at least one contacting surface that couples to the muscular-skeletal system. The sensing module (200) comprises one or more sensing assemblages (2302), electronic circuitry (307), an antenna (2302), and communication circuitry (320). The sensing assemblages (2302) are between a top plate (1502) and a bottom plate (1504) in a sensing platform (121). The bottom plate (1504) is supported by a ledge (1708) on an interior surface of a sidewall (1716) of a housing (1706). A cap (1702) couples to top plate (1502). The sensing assemblage (2302) includes one of a piezo-resistive sensor, MEMS sensor, strain gauge, or mechanical sensor when a force, pressure, or load is applied to the top plate (1502).
摘要:
A spine alignment system is provided to assess load forces on the vertebra in conjunction with overall spinal alignment. The system includes a spine instrument having an electronic assembly and a sensorized head. The sensorized head can be inserted between vertebra and report vertebral conditions such as force, pressure, orientation and edge loading. A GUI is therewith provided to show where the spine instrument is positioned relative to vertebral bodies as the instrument is placed in the inter-vetebral space. The system can distract vertebrae to a first height and measure the load applied by the spine region. The GUI can indicate that the load is outside a predetermined range. The spine region can be distracted to a second height where the load is measured within the predetermined load range.
摘要:
A distractor suitable for measuring a force, pressure, or load applied by the muscular-skeletal system is disclosed. In one embodiment, the distractor includes a measurement device that couples to the distractor. In a second embodiment, the sensor array and electronics are placed within the distractor. The distractor can dynamically distract the muscular-skeletal system. A handle of the distractor can be rotated to increase or decrease the spacing between support structures. The measurement system comprises a sensor array and electronic circuitry. In one embodiment, the electronic circuitry is coupled to the sensor array by a unitary circuit board or substrate. The sensors can be integrated into the unitary circuit board. For example, the sensors can comprise elastically compressible capacitors or piezo-resistive devices. The distractor wirelessly couples to a remote system for providing position and magnitude measurement data of the force, pressure, or load being measured.
摘要:
A sensing insert device (100) is disclosed for measuring a parameter of the muscular-skeletal system. The sensing insert device (100) can be temporary or permanent. The sensing module (200) is a self-contained encapsulated measurement device having at least one contacting surface that couples to the muscular-skeletal system. The sensing module (200) comprises one or more sensing assemblages (2302), electronic circuitry (307), an antenna (2302), and communication circuitry (320). The sensing assemblages (2302) are between a top plate (1502) and a bottom plate (1504) in a sensing platform (121). The bottom plate (1504) is supported by a ledge (1708) on an interior surface of a sidewall (1716) of a housing (1706). A cap (1702) couples to top plate (1502). The sensing assemblage (2302) includes one of a piezo-resistive sensor, MEMS sensor, strain gauge, or mechanical sensor when a force, pressure, or load is applied to the top plate (1502).
摘要:
A load balance and alignment system is provided to assess load forces on the vertebra in conjunction with overall spinal alignment. The system includes a spine instrument having an electronic assembly and a sensorized head. The sensorized head can be inserted between vertebra and report vertebral conditions such as force, pressure, orientation and edge loading. A GUI is therewith provided to show where the spine instrument is positioned relative to vertebral bodies as the instrument is placed in the inter-vertebral space. The system can report optimal prosthetic size and placement in view of the sensed load and location parameters including optional orientation, rotation and insertion angle along a determined insert trajectory.