Abstract:
There is provided an integrated loopback used for on-die self-test and diagnosis of transceiver faults. According to embodiments, there is provided an interface network including an AC coupling capacitor interposed between input pins of the interface network and an input of an amplifier, a shunt capacitor interposed between the AC coupling capacitor and the input of the amplifier and a selector. The selector includes a mission mode circuit component connected to a bottom plate of the shunt capacitor and the selector is configured to select between a first mode and a second mode, wherein the first mode is mission mode and the second mode is loopback mode, wherein in the second mode the mission mode circuit component forms at least part of a circuit that supplies a loopback signal.
Abstract:
The present disclosure relates to an analog-to-digital converter (ADC) and a method for controlling an ADC. The ADC includes a plurality of quantization levels for analog-to-digital conversion. The ADC is adapted for utilizing a subset of the plurality of quantization levels for analog-to-digital signal conversion. The subset is formed by selecting at least one level to be deactivated using a greedy search method and deactivating the at least one level. The method includes using a subset of the plurality of quantization levels for analog-to-digital signal conversion, the subset being formed by selecting at least one level to be deactivated using a greedy search method and deactivating the at least one level.
Abstract:
Systems and circuits for an asynchronous SAR ADC are described. The SAR ADC includes a two-stage comparator with a preamplifier first stage and a latch second stage. The preamplifier first stage is activated by an active pulse of a first clock signal and the latch second stage is activated by an active pulse of a second clock signal. The Done signal from a done detector is fed back as the active pulse of the first clock signal. The leading edge of the active pulse of the second clock signal is driven by the leading edge of the active pulse of the first clock signal via an RS latch. The Done signal is further fed back through the RS latch to drive a trailing edge of the active pulse of the second clock signal.
Abstract:
The present disclosure provides a system, circuit, and method for correcting clock skew in time-interleaved analog-to-digital converters. At least two clock signals are received along respective channels. A delay of a first channel, carrying a first clock signal, is accounted for by applying one or more first adjustment factors to the channels until an edge of the first clock signal is aligned with a transition point of a reference signal. The first clock signal is swapped to the second channel, and vice-versa. A value of the reference signal as sampled by the first clock signal is compared to values of the reference signal as sampled by the second clock signal to determine a skew of the second channel vis-à-vis the first channel, and one or more second adjustment factors are applied to the second channel based on the determined skew of the second channel.