摘要:
A miniaturized sensor device comprises at least one pair of active projecting elements or cantilevers, which are set parallel to one another and at a micrometric or sub-micrometric distance apart and are designed to be submerged at least partially in a fluid. Each pair comprises a first cantilever, equipped with actuator means, and a second cantilever, equipped with sensor means. The actuator means can cause a movement of the first cantilever, whilst the sensor means can detect a movement of the second cantilever, induced by the movement of the first cantilever, for generating accordingly a measurable signal, which represents the lubricating capacity of the fluid.
摘要:
A miniaturized sensor device comprises at least one pair of active projecting elements or cantilevers, which are set parallel to one another and at a micrometric or sub-micrometric distance apart and are designed to be submerged at least partially in a fluid. Each pair comprises a first cantilever, equipped with actuator means, and a second cantilever, equipped with sensor means. The actuator means can cause a movement of the first cantilever, whilst the sensor means can detect a movement of the second cantilever, induced by the movement of the first cantilever, for generating accordingly a measurable signal, which represents the lubricating capacity of the fluid.
摘要:
The system allows the generation and distribution of energy on board a motor vehicle provided with a propulsion unit, a tank for fuel at least one distribution network or line for electric energy, electrical energy generation devices connected to the at least one distribution network or line, and a plurality of selectively activatable electrical utiliser devices or apparatus connected or connectable to the at least one distribution network or line. The electrical energy generator devices includes (at least) a microcombustor electricity generator matrix or battery connected to the fuel tank, and a supervision and control unit associated with this generator matrix or battery and coupled to the distribution network or line and arranged to control the operation of the said generator matrix or battery in a predetermined manner as a function of the electrical power required or consumed by the said network or line.
摘要:
The system allows the generation and distribution of energy on board a motor vehicle provided with a propulsion unit, a tank for fuel at least one distribution network or line for electric energy, electrical energy generation devices connected to the said at least one distribution network or line, and a plurality of selectively activatable electrical utiliser devices or apparatus connected or connectable to the said at least one distribution network or line. The said electrical energy generator devices comprise (at least) a microcombustor electricity generator matrix or battery connected to the fuel tank, and a supervision and control unit associated with this generator matrix or battery and coupled to the distribution network or line and arranged to control the operation of the said generator matrix or battery in a predetermined manner as a function of the electrical power required or consumed by the said network or line.
摘要:
The system allows the generation and distribution of energy on board a motor vehicle provided with a propulsion unit, a tank for fuel at least one distribution network or line for electric energy, electrical energy generation devices connected to the at least one distribution network or line, and a plurality of selectively activatable electrical utiliser devices or apparatus connected or connectable to the at least one distribution network or line. The electrical energy generator devices includes (at least) a microcombustor electricity generator matrix or battery connected to the fuel tank, and a supervision and control unit associated with this generator matrix or battery and coupled to the distribution network or line and arranged to control the operation of the generator matrix or battery in a predetermined manner as a function of the electrical power required or consumed by the network or line.
摘要:
The device includes a combustor comprising an inlet chamber or region intended to receive a flow of fuel and a combustion supporter at high pressure, an outlet chamber or region or combustion product exhaust at relatively lower pressure, and at least one separation element of nano-porous or micro-porous semi-conductor material which separates the inlet chamber or region from the outlet chamber or region. The separation element has a plurality of nano-pores or micro-pores passing therethrough which define communication passages between the inlet clad chamber or region and the outlet chamber or region. The surface of these pores is at least partly clad in a layer of an electrically conductive or semi-conductive material which, relative to the semi-conductor material of the separation element forms an essentially extended junction, in particular a p-n junction or a Schottky junction or a hetero junction. First and second electrodes are connected to the cladding of the pores passing therethrough, and respectively, to the semi-conductor material of the separation element. In operation the pores act as confined microcombustion chambers and the energy developed by the combustion is able to cause creation of stable electron-hole pairs at the said junction and the generation of a corresponding potential difference between the electrodes.
摘要:
The electricity generator comprises a microcombustor provided with a fuel injector and acting to produce at an exhaust outlet a flow of exhaust gas in plasma state comprising positive ions and electrons separated from one another, and a conversion device coupled to the outlet of the microcombustor. The conversion device comprises an electrically insulating duct coupled to the said outlet of the microcombustor and provided in its initial portion with separation and capture electrodes for capturing the negative charges (electrons) of the plasma in such a way that downstream the plasma comprises only positive ions. After the initial portion the duct has an intermediate portion provided with an outer cladding of conductive material insulated from the plasma, the ends of which are connectable to a load. In operation the flow of positive ions in the intermediate portion of the duct electrostatically induces in the conductive cladding a negative charge which propagates in the cladding along the direction of flow of the plasma in the intermediate portion of the duct thereby generating a flow of electric current in the load.
摘要:
The system allows the generation and distribution of energy on board a motor vehicle provided with a propulsion unit, a tank for fuel at least one distribution network or line for electric energy, electrical energy generation devices connected to the at least one distribution network or line, and a plurality of selectively activatable electrical utilizer devices or apparatus connected or connectable to the at least one distribution network or line. The electrical energy generator devices includes (at least) a microcombustor electricity generator matrix or battery connected to the fuel tank, and a supervision and control unit associated with this generator matrix or battery and coupled to the distribution network or line and arranged to control the operation of the generator matrix or battery in a predetermined manner as a function of the electrical power required or consumed by the network or line.
摘要:
The generator comprises at least one source of pressurized gas and a closed hydraulic circuit containing a solution comprising an electrically conducting vehicle liquid in which a charge of micro- or nanoparticles of a metal material is dispersed. The circuit has at least one inlet port connected to the source so that, when in operation, it receives a flow of pressurized gas capable of causing circulation of the solution within the circuit in a predetermined direction, forming a two-phase gas-liquid mixture with it, a restriction in cross section, downstream from the inlet port calibrated in such a way as to cause an increase in velocity and condensation of the two-phase mixture, and at least one outlet port, located downstream from the restriction through which the gas mixed with the solution can be released and discharged from the circuit. The generator also comprises magnetic field generating devices, associated with a length of the hydraulic circuit lying between the inlet port and the restriction in cross section in order to generate an induction flux (10) at right angles to the direction of flow of the solution in that length of circuit, and at least one pair of electrodes placed in contact with the solution in that length of the hydraulic circuit, and facing each other in a direction essentially at right angles to the lines of force of the magnetic field and the flow direction of the solution in that length of circuit. The arrangement is such that, when in operation, an electric current whose strength depends on the flow velocity of the solution in that length of the hydraulic circuit, the strength of the associated magnetic field and the electrical resistance between the electrodes flows between the electrodes.
摘要:
The generator comprises at least one source of pressurized gas and a closed hydraulic circuit containing a solution comprising an electrically conducting vehicle liquid in which a charge of micro- or nanoparticles of a metal material is dispersed. The circuit has at least one inlet port connected to the source so that, when in operation, it receives a flow of pressurized gas capable of causing circulation of the solution within the circuit in a predetermined direction, forming a two-phase gas-liquid mixture with it, a restriction in cross section, downstream from the inlet port calibrated in such a way as to cause an increase in velocity and condensation of the two-phase mixture, and at least one outlet port, located downstream from the restriction through which the gas mixed with the solution can be released and discharged from the circuit. The generator also comprises magnetic field generating devices, associated with a length of the hydraulic circuit lying between the inlet port and the restriction in cross section in order to generate an induction flux (10) at right angles to the direction of flow of the solution in that length of circuit, and at least one pair of electrodes placed in contact with the solution in that length of the hydraulic circuit, and facing each other in a direction essentially at right angles to the lines of force of the magnetic field and the flow direction of the solution in that length of circuit. The arrangement is such that, when in operation, an electric current whose strength depends on the flow velocity of the solution in that length of the hydraulic circuit, the strength of the associated magnetic field and the electrical resistance between the electrodes flows between the electrodes.