摘要:
According to one embodiment, the economical load dispatcher calculates a discharging threshold value and a charging threshold value based on a discharging unit price of and a charging and discharging efficiency of the secondary battery and further calculates output allocations of the generators and secondary battery such that the secondary battery is discharged when incremental fuel costs of the generators are higher than the discharging threshold value, whereas the secondary battery is charged when incremental fuel costs of the generators are lower than the charging threshold value.
摘要:
To provide a secondary battery controlling apparatus and a controlling method that can keep a storage amount of a secondary battery used for supply and demand control of a power system not close to 100% or 0%. The present invention is a power supply and demand controlling apparatus of a small-scaled power system 1 including distributed power supplies 31, 32, . . . 3n including a secondary battery and a controlling method, wherein the secondary battery controlling apparatus includes a power generation planning part 6 calculating a planned output value of the distributed power supply based on a past load power and output data including track record data of a power generation output, a planned storage amount estimating part 7 estimating a planned storage amount of the secondary battery from the planned output value of the secondary battery calculated at the power generation planning part, an actual output detecting part 8 measuring and detecting an actual output value of the secondary battery, an actual storage amount estimating part 9 estimating an actual storage amount from the actual output value of the secondary battery detected at the actual output detecting part, and a storage amount controlling part 10 controlling the actual storage amount back to the planned storage amount if there is a difference between the planned storage amount estimated at the planned storage amount estimating part and the actual storage amount estimated at the actual storage amount estimating part.
摘要:
To provide a secondary battery controlling apparatus and a controlling method that can keep a storage amount of a secondary battery used for supply and demand control of a power system not close to 100% or 0%. The present invention is a power supply and demand controlling apparatus of a small-scaled power system 1 including distributed power supplies 31, 32, . . . 3n including a secondary battery and a controlling method, wherein the secondary battery controlling apparatus includes a power generation planning part 6 calculating a planned output value of the distributed power supply based on a past load power and output data including track record data of a power generation output, a planned storage amount estimating part 7 estimating a planned storage amount of the secondary battery from the planned output value of the secondary battery calculated at the power generation planning part, an actual output detecting part 8 measuring and detecting an actual output value of the secondary battery, an actual storage amount estimating part 9 estimating an actual storage amount from the actual output value of the secondary battery detected at the actual output detecting part, and a storage amount controlling part 10 controlling the actual storage amount back to the planned storage amount if there is a difference between the planned storage amount estimated at the planned storage amount estimating part and the actual storage amount estimated at the actual storage amount estimating part.
摘要:
According to one embodiment, the economical load dispatcher calculates a discharging threshold value and a charging threshold value based on a discharging unit price of and a charging and discharging efficiency of the secondary battery and further calculates output allocations of the generators and secondary battery such that the secondary battery is discharged when incremental fuel costs of the generators are higher than the discharging threshold value, whereas the secondary battery is charged when incremental fuel costs of the generators are lower than the charging threshold value.
摘要:
A power supply and demand control apparatus includes a power generation planning unit that calculates one day's power outputs of multiple distributed power sources and a power flow target of a linking point to another power system, a long-cycle control unit having a long-cycle supply-demand balancing control unit that performs control every few minutes so as to ensure the supply-demand balancing of electric energy in a given amount of time at the linking point in order to perform control for making deviations between total power output calculated by the power generation planning unit and load power in the power system constant, and a short-cycle control unit having a short-cycle supply-demand balancing control unit that performs similar control every few seconds. In the power supply and demand control apparatus, the long-cycle control unit and short-cycle control unit perform the supply-demand balancing control in a hierarchical fashion to determine output assignments of the distributed power sources.
摘要:
A power supply and demand control apparatus includes a power generation planning unit that calculates one day's power outputs of multiple distributed power sources and a power flow target of a linking point to another power system, a long-cycle control unit having a long-cycle supply-demand balancing control unit that performs control every few minutes so as to ensure the supply-demand balancing of electric energy in a given amount of time at the linking point in order to perform control for making deviations between total power output calculated by the power generation planning unit and load power in the power system constant, and a short-cycle control unit having a short-cycle supply-demand balancing control unit that performs similar control every few seconds. In the power supply and demand control apparatus, the long-cycle control unit and short-cycle control unit perform the supply-demand balancing control in a hierarchical fashion to determine output assignments of the distributed power sources.
摘要:
According to one embodiment, there is provided an executive monitoring and control system for monitoring and controlling a power generation output of each dispersed power source and a load of each demand facility in a smart grid or a micro grid. An abnormal-time interchange procedure formation unit forms, when a fault occurs in a system, an interchange procedure of matching the total power generation output amount of dispersed power sources with the total loading of demand facilities, by using at least the information acquired by the measurement value monitoring unit and the information managed by the customer information management unit.
摘要:
According to one embodiment, there is provided an executive monitoring and control system for monitoring and controlling a power generation output of each dispersed power source and a load of each demand facility in a smart grid or a micro grid. An abnormal-time interchange procedure formation unit forms, when a fault occurs in a system, an interchange procedure of matching the total power generation output amount of dispersed power sources with the total loading of demand facilities, by using at least the information acquired by the measurement value monitoring unit and the information managed by the customer information management unit.
摘要:
An electricity storage device includes a first battery stack (15), a second battery stack (11 to 14), and a case (22) that accommodates the first battery stack and the second battery stack. Each of the first battery stack and the second battery stack includes a plurality of cells (151) that are aligned and the second battery stack is placed under the first battery stack. The supporting member (80) that supports the first battery stack is placed between the first battery stack and the second battery stack and is fixed to the case.
摘要:
An electric-power-generation level predicting apparatus 1 includes a memory unit 20 that stores, as past data relating to a past electric power generation level of an electric power generator, past data containing information at multiple time points in each day, and an predicted-value calculating unit 13 that calculates, as time-series data containing an occurrence probability, an predicted value of the past data relating to an electric power generation level of the electric power generator based on a statistical correlation between different times in the past data or a statistical correlation between locations of the different electric power generators. The predicted-value calculating unit 13 includes a variance-covariance-matrix generator unit 131 that generates a variance-covariance matrix based on the past data, and a random-number generator unit 132 that generates a random number following the probability distribution based on the variance-covariance matrix.