摘要:
The invention concerns a device for measuring the speed and direction of rotation of an object (3) near to which it is placed. It comprises: a magnetic detection device (2) that delivers, in response to a rotation of the object (3) generating a magnetic field variation, signals representative of its speed and its direction of rotation, a conductor (4) intended to be connected to a power source to supply current to the magnetic detection device (2) at least, current receptor means (6) placed between the magnetic detection device (2) and the conductor (4) that create, from signals coming from said magnetic detection device (2), a modulation of the current (Iout) flowing in the conductor (4), said modulated current (Iout) reflecting both the speed and the direction of rotation of the object (3). Application particularly in the oil industry.
摘要:
The invention concerns a device for measuring the speed and direction of rotation of an object (3) near to which it is placed. It comprises: a magnetic detection device (2) that delivers, in response to a rotation of the object (3) generating a magnetic field variation, signals representative of its speed and its direction of rotation, a conductor (4) intended to be connected to a power source to supply current to the magnetic detection device (2) at least, current receptor means (6) placed between the magnetic detection device (2) and the conductor (4) that create, from signals coming from said magnetic detection device (2), a modulation of the current (Iout) flowing in the conductor (4), said modulated current (Iout) reflecting both the speed and the direction of rotation of the object (3). Application particularly in the oil industry.
摘要:
A downhole optical apparatus includes an LED source, reflectance and fluorescence detectors, a plurality of fibers, a dichroic mirror (DM), a beam splitter/coupler, a probe, a short-pass filter (SP), a dichroic long-pass filter (LP), and a lens. Source light filtered by the SP is fed to the DM which deflects light of desired wavelengths only. The deflected light is focused by the lens onto a fiber and is ultimately injected into an oil flow by the probe. Light reflected by oil or fluorescing therefrom is received by the probe, and split by the splitter. A small portion is received by the reflectance detector. A large portion is received by the lens and directed to the DM which deflects reflected light and passes light at longer fluorescing wavelengths. Passed light is further filtered by the DM and LP to eliminate remnants of the reflected light, and provided to the fluorescence detector.
摘要:
An apparatus includes a circuit to receive power and data over a communication medium, where the circuit is to separate the power and the data. An electronic switch couples the power output by the circuit to a downhole electrical component for use in a well. According to other implementations, an electro-hydraulic actuator includes an outer housing defining a first hydraulic chamber and a second hydraulic chamber, where a seal for one of the hydraulic chambers is achieved without use of an elastomeric seal.
摘要:
A downhole fluid analysis tool capable of fluid analysis during production logging that includes a phase separator and a plurality of sensors to perform analysis on the fluids collected at a subsurface location in a borehole.
摘要:
First equipment is provided in a first lateral branch of a well, and second equipment in a second lateral branch of the well. Cross-lateral logging is performed using the first and second equipment in the corresponding first and second lateral branches.
摘要:
An apparatus includes a circuit to receive power and data over a communication medium, where the circuit is to separate the power and the data. An electronic switch couples the power output by the circuit to a downhole electrical component for use in a well. According to other implementations, an electro-hydraulic actuator includes an outer housing defining a first hydraulic chamber and a second hydraulic chamber, where a seal for one of the hydraulic chambers is achieved without use of an elastomeric seal.
摘要:
First equipment is provided in a first lateral branch of a well, and second equipment in a second lateral branch of the well. Cross-lateral logging is performed using the first and second equipment in the corresponding first and second lateral branches.
摘要:
The invention concerns a method for calculating the relative volumetric flow-rates of at least one of the phases of a multiphase effluent flowing in a well. Firstly, the local volumetric fractions and/or velocities of the phases across a section of the wall at a certain depth is acquired. Then, the local volumetric fraction and/or velocity measurements is/are corrected in order to make them consistent with each other and/or with the effluent flow conditions. Subsequently, selection of a suitable flow model mathematically representing the effluent flow is selected. Then, The local volumetric fraction measurements and/or the local velocity measurements are interpolated by the selected flow model in order to obtain a volumetric fraction profile and/or a velocity profile for at least one phase of the effluent across the section of the well at the depth. Finally, the relative volumetric flow-rates of the at least one phase are calculated by integration of the volumetric fraction and/or velocity profiles over the section of the well at the depth.
摘要:
The invention concerns a method for calculating the relative volumetric flow-rates of at least one of the phases of a multiphase effluent flowing in a well, said method comprising a first step of acquiring local volumetric fractions and/or velocities of said phases across a section of the well at a certain depth. The method further comprises:—corrections of said local volumetric fraction and/or velocity measurements in order to make them consistent with each other and/or with the effluent flow conditions;—selection of a suitable flow model mathematically representing the effluent flow;—interpolation of said local volumetric fraction measurements and/or said local velocity measurements by the selected flow model in order to obtain a volumetric fraction profile and/or a velocity profile for at least one phase of the effluent across said section of the well at said depth.—calculation of the relative volumetric flow-rates of said at least one phase by integration of said volumetric fraction and/or velocity profiles over said section of the well at said depth.