摘要:
A coupler (10) having a first line (1) and a second line (2) also comprises a resonant structure (3) including a capacitor (5) and an inductor (4). The coupler (10) thus delivers a coupling signal S31 that is substantially frequency independent over a frequency domain above the resonance frequency of the resonant structure (3). Also, the signal S31 has a high degree of directivity. The coupler (10) can be provided as part of an integrated electronic component, such as a multilayer substrate, a thin-film module or an IC. It can be applied in an electronic device (100) between a power amplifier (101) and an antenna (103). The coupling signal S31 will thus be provided to a controlling circuit (102).
摘要:
The invention relates to a substrate which is made from paper and is provided with at least one integrated circuit which is produced from a semiconductive organic polymer. A semiconductive organic polymer of this nature, when used as the base material for the integrated circuit, leads to the possibility of directly producing the substrate in the required thickness, to the need for support layers and/or protective layers being eliminated, and to the possibility of reducing the cost price of the substrate compared to substrates which comprise an integrated circuit of the silicon type.
摘要:
The invention relates to a substrate which is made from paper and is provided with at least one integrated circuit which is produced from a semiconductive organic polymer. A semiconductive organic polymer of this nature, when used as the base material for the integrated circuit, leads to the possibility of directly producing the substrate in the required thickness, to the need for support layers and/or protective layers being eliminated, and to the possibility of reducing the cost price of the substrate compared to substrates which comprise an integrated circuit of the silicon type.
摘要:
An identification transponder comprising an identification code generator (10) embodied as an integrated circuit predominantly comprising organic materials. The integrated circuit may be provided on an anti-theft sticker (5) accommodating an LC resonant circuit (3, 4).
摘要:
Method for driving an array of micro-electro mechanical system (MEMS) devices, said array providing a plurality of logical or memory states at it output, wherein the MEMS devices are given a characteristic hysteresis curve differing from one MEMS device to another MEMS device, and wherein a single control voltage applied to all the MEMS devices while the various states of the array are to be obtained by varying the single control voltage.
摘要:
The invention relates to a substrate which is made from paper and is provided with at least one integrated circuit which is produced from a semiconductive organic polymer. A semiconductive organic polymer of this nature, when used as the base material for the integrated circuit, leads to the possibility of directly producing the substrate in the required thickness, to the need for support layers and/or protective layers being eliminated, and to the possibility of reducing the cost price of the substrate compared to substrates which comprise an integrated circuit of the silicon type.
摘要:
The present invention provides a method of photochemically producing a vertical interconnect between a first and a second thin-film microelectronic device in an vertical interconnect area which comprises an overlap of a stack of a first electrically conducting area, optionally an organic electrically semiconducting area, an organic electrically insulating area comprising adapted photoresist material and a second organic electrically conducting area, wherein the organic electrically insulating area is removed within the overlapping area and substituted by an electrically conducting area which is extended from at least said first or said second electrically conducting area. The method is useful in the manufacture of electronic devices, preferably integrated circuits, consisting substantially of organic materials.
摘要:
Display device in which switching elements (5) are realized in an organic semiconductor layer. Mutual insulation of the elements and pixels is obtained either electrically by applying depletion via voltages to a guard line (4) or physically by making parts of the organic semiconductor layer insulating.