摘要:
A method of manufacturing an integrated circuit includes a semiconductor substrate having bitlines under a charge-trapping material over a core region and a gate insulator material over a periphery region. A wordline-gate material, a hard mask, and a first photoresist are deposited and patterned over the core region while covering the periphery region. After removing the first photoresist, wordlines are formed from the wordline-gate material in the core region. An anti-reflective coating and a second photoresist are deposited and patterned over the periphery region and covering the core region. The anti-reflective coating is removable without damaging the charge-trapping material. After removing the second photoresist and the anti-reflective coating, gates are formed from the wordline-gate material in the periphery region and the integrated circuit completed.
摘要:
A method of manufacturing an integrated circuit is provided with a semiconductor substrate having a core region and a periphery region. A charge-trapping dielectric layer is deposited in the core region, and a gate dielectric layer is deposited in the periphery region. Bitlines are formed in the semiconductor substrate in the core region and not in the periphery region. A wordline-gate layer is formed and implanted with dopant in the core region and not in the periphery region. A wordline and gate are formed. Source/drain junctions are implanted with dopant in the semiconductor substrate around the gate, and the gate is implanted with a gate doping implantation in the periphery region and not in the core region.
摘要:
A manufacturing method is provided for an integrated circuit memory with closely spaced wordlines formed by using hard mask extensions. A charge-trapping dielectric material is deposited over a semiconductor substrate and first and second bitlines are formed therein. A wordline material and a hard mask material are deposited over the wordline material. A photoresist material is deposited over the hard mask material and is processed to form a patterned photoresist material. The hard mask material is processed using the patterned photoresist material to form a patterned hard mask material. The patterned photoresist is then removed. A hard mask extension material is deposited over the wordline material and is processed to form a hard mask extension. The wordline material is processed using the patterned hard mask material and the hard mask extension to form a wordline, and the patterned hard mask material and the hard mask extension are then removed.
摘要:
A manufacturing method for a MirrorBit® Flash memory includes providing a semiconductor substrate and depositing a charge-trapping dielectric layer. First and second bitlines are implanted and a wordline layer is deposited. A hard mask layer is deposited over the wordline layer. The hard mask is of a material formulated for removal without damaging the charge-trapping dielectric layer. A photoresist is deposited over the wordline layer and used to form a hard mask. The photoresist is removed. The wordline layer is processed using the hard mask to form a wordline and the hard mask is removed. A salicide is grown without short-circuiting the first and second bitlines.
摘要:
A method of manufacturing an integrated circuit includes providing a semiconductor substrate and depositing a charge-trapping dielectric layer and a gate dielectric layer over the semiconductor substrate. Bitlines are implanted closely in the semiconductor substrate and annealed using a rapid thermal anneal. Wordlines and gates are formed and source/drain junctions are implanted in the semiconductor substrate. An interlayer dielectric layer is deposited and the integrated circuit completed.
摘要:
A manufacturing method for a MirrorBit® Flash memory includes providing a semiconductor substrate and depositing a charge-trapping dielectric material. First and second bitlines are implanted and a wordline material is deposited. A hard mask material is deposited over the wordline material. The hard mask material is of a material having the characteristic of being deposited rather than grown. A photoresist material is deposited over the wordline material and is patterned to form a patterned hard mask. The patterned photoresist material is removed. The wordline material is processed using the patterned hard mask to form a wordline. The patterned hard mask material is removed.
摘要:
A method is provided for creating optical features on a lithography mask for use in patterning a series of openings of an etch mask on a semiconductor device wafer, comprising creating a series of optical features spaced on the lithography mask from one another along a first direction, where the individual optical features have first mask feature dimensions along the first direction that are smaller than a desired first dimension for the openings to be patterned in the etch mask.
摘要:
A method and structure is provided for an integrated circuit with a semiconductor substrate having an opening provided therein. A doped high conductivity region is formed from doped material in the opening and a diffused dopant region proximate the doped material in the opening. A structure is over the doped high conductivity region selected from a group consisting of a wordline, a gate, a dielectric layer, and a combination thereof.
摘要:
A structure is provided for an integrated circuit with a semiconductor substrate having an opening provided therein. A doped high conductivity region is formed from doped material in the opening and a diffused dopant region proximate the doped material in the opening. A structure is over the doped high conductivity region selected from a group consisting of a wordline, a gate, a dielectric layer, and a combination thereof.
摘要:
A technique for forming at least part of an array of a dual bit memory core is disclosed. Initially, a portion of a charge trapping dielectric layer is formed over a substrate and a resist is formed over the portion of the charge trapping dielectric layer. The resist is patterned and a pocket implant is performed at an angle to establish pocket implants within the substrate. A bitline implant is then performed to establish buried bitlines within the substrate. The patterned resist is then removed and the remainder of the charge trapping dielectric layer is formed. A wordline material is formed over the remainder of the charge trapping dielectric layer and patterned to form wordlines that overlie the bitlines. The pocket implants serve to mitigate, among other things, complementary bit disturb (CBD) that can result from semiconductor scaling. As such, semiconductor devices can be made smaller and increased packing densities can be achieved by virtue of the inventive concepts set forth herein.