Abstract:
A system including a power amplifier having a first gain, a preamplifier having a second gain, a first temperature sensor configured to sense the temperature of the power amplifier, and a bias generator. The first gain is a function of a temperature of the power amplifier. The preamplifier receives an input signal, amplifies the input signal according to the second gain, and outputs an amplified signal to the power amplifier. The bias generator generates a biasing signal to bias the preamplifier and adjusts the second gain of the preamplifier by adjusting the biasing signal based on the temperature of the power amplifier and an ambient temperature. The adjusted second gain of the preamplifier compensates a change in the first gain of the power amplifier due to a change in the temperature of the power amplifier.
Abstract:
In accordance with an embodiment of the disclosure, systems and methods are provided for multi-modal power amplification. In certain implementations, an adjustable power amplifier amplifies an input signal, and the amount of amplification is varied based on the input signal. A variable impedance unit receives an amplified input signal, and the amount of load impedance at the variable impedance unit is varied based on the input signal.
Abstract:
A circuit includes a bias circuit for a biased transistor. The bias circuit includes a master-slave source follower circuit, a reference transistor, and a bias circuit voltage output coupled to the biased transistor and configured to provide a bias voltage. The reference transistor has a transconductance substantially identical to a transconductance of the biased transistor. A signal ground circuit may be coupled between the biased transistor and one or more components of the bias circuit that do not generate significant return currents to a power supply ground. A method includes generating a current in a reference transistor according to a first voltage generated using a master source follower circuit, generating a second voltage substantially identical to the first voltage using a slave source follower circuit, and providing the second voltage to a biased transistor. The reference transistor has a transconductance substantially identical to a transconductance of the biased transistor.
Abstract:
A system including a power amplifier having a first gain, a preamplifier having a second gain, a first temperature sensor configured to sense the temperature of the power amplifier, and a bias generator. The first gain is a function of a temperature of the power amplifier. The preamplifier receives an input signal, amplifies the input signal according to the second gain, and outputs an amplified signal to the power amplifier. The bias generator generates a biasing signal to bias the preamplifier and adjusts the second gain of the preamplifier by adjusting the biasing signal based on the temperature of the power amplifier and an ambient temperature. The adjusted second gain of the preamplifier compensates a change in the first gain of the power amplifier due to a change in the temperature of the power amplifier.
Abstract:
A circuit includes a bias circuit for a biased transistor. The bias circuit includes a master-slave source follower circuit, a reference transistor, and a bias circuit voltage output coupled to the biased transistor and configured to provide a bias voltage. The reference transistor has a transconductance substantially identical to a transconductance of the biased transistor. A signal ground circuit may be coupled between the biased transistor and one or more components of the bias circuit that do not generate significant return currents to a power supply ground. A method includes generating a current in a reference transistor according to a first voltage generated using a master source follower circuit, generating a second voltage substantially identical to the first voltage using a slave source follower circuit, and providing the second voltage to a biased transistor. The reference transistor has a transconductance substantially identical to a transconductance of the biased transistor.
Abstract:
In accordance with an embodiment of the disclosure, systems and methods are provided for multi-modal power amplification. In certain implementations, an adjustable power amplifier amplifies an input signal, and the amount of amplification is varied based on the input signal. A variable impedance unit receives an amplified input signal, and the amount of load impedance at the variable impedance unit is varied based on the input signal.