摘要:
A hydrogen absorbing alloy is provided which is increased in reaction rate without being restricted in composition and which is unimpaired in the reversibility of reaction and hydrogen absorption-desorption cycle life characteristics. The alloy contains the phase of an intermetallic compound of the composition A5T19 wherein A is at least one element selected from the group consisting of La, Ce, Pr, Sm, Nd, Mm (misch metal), Y, Gd, Ca, Mg, Ti, Zr and Hf, and T is at least one element selected from the group consisting of B, Bi, Al, Si, Cr, V, Mn, Fe, Co, Ni, Cu, Zn, Sn and Sb. The alloy is produced by mixing together an alloy containing an AT3 phase and an alloy containing an AT4 phase, mechanically alloying the mixture to form the phase of intermetallic compound of the composition A5T19 in addition to the AT3 and AT4 phases, and subsequently mixing together or mechanically alloying the resulting alloy and an alloy containing AT5 phase.
摘要:
The invention provides a system for storing and utilizing hydrogen comprising a liquefied hydrogen storage container 1 to be filled with liquefied hydrogen 2, a fuel cell 5 operable by a supply of hydrogen gas and serving as a hydrogen utilizing device, hydrogen gas piping 37 interconnecting the storage container 1 and the fuel cell 5, a hydrogen absorbing alloy container 3 connected to an intermediate portion of the piping 37 and having a hydrogen absorbing alloy 4 accommodated therein, a heat accumulator 6 having a heat storage medium 7 accommodated therein, piping 25 and a pump 22 for circulating the heat storage medium 7 between the fuel cell 5 and the heat accumulator 6, and piping 24 and a pump 21 for circulating the heat storage medium between the alloy container 3 and the heat accumulator 6.
摘要:
Molded bodies of a hydrogen absorbing alloy accommodated in a hydrogen storage container are made readily replaceable to ensure stabilized supply of hydrogen gas. When exhibiting an impaired hydrogen absorbing-desorbing capacity, the molded bodies can be easily replaced by new molded bodies, whereby a specified hydrogen absorbing-desorbing capacity can be maintained. The hydrogen gas released from the storage container is partly utilized to heat the container and thereby maintain the alloy at a predetermined temperature, consequently assuring a device, such as a fuel cell, of stabilized supply of hydrogen from the container.
摘要:
Molded bodies of a hydrogen absorbing alloy accommodated in a hydrogen storage container are made readily replaceable to ensure stabilized supply of hydrogen gas. When exhibiting an impaired hydrogen absorbing-desorbing capacity, the molded bodies can be easily replaced by new molded bodies, whereby a specified hydrogen absorbing-desorbing capacity can be maintained. The hydrogen gas released from the storage container is partly utilized to heat the container and thereby maintain the alloy at a predetermined temperature, consequently assuring a device, such as a fuel cell, of stabilized supply of hydrogen from the container.
摘要:
An object of the present invention is to provide an effective hydrogen-absorbing alloy activation process which can enhance the electrochemical activity of a hydrogen-absorbing alloy and to provide a hydrogen-absorbing alloy electrode which, when used in a battery, ensures an excellent initial inner pressure characteristic, low-temperature discharge characteristic, high-rate discharge characteristic and cycle characteristic. In accordance with the present invention, a hydrogen-absorbing alloy electrode production process is provided which comprises an alloy activation treatment step of immersing a hydrogen-absorbing alloy in a strong acid treatment solution containing metal ions and, in the course of the pH rise of the acid treatment solution, adding an alkali to the acid treatment solution to promote the pH rise of the acid treatment solution.
摘要:
In an alkali storage battery comprising a positive electrode, a negative electrode and an alkali electrolyte in a battery can, .alpha.-nickel hydroxide containing manganese is used as a cathode active material for the positive electrode, and the difference between a charging potential and an oxygen gas evolution potential at the positive electrode is increased, to suppress oxygen gas evolution during the charging, and the volume percentage of the cathode active material and an anode active material is set to not less than 75% in the battery can, to obtain a large battery capacity.
摘要:
In the non-sintered nickel electrode for an alkaline storage battery according to the invention, a yttrium metal powder and/or a yttrium compound powder has been added to a particulate active material comprising composite particles each consisting of a nickel hydroxide core and a sodium-doped cobalt compound shell. Because the yttrium metal powder and/or yttrium compound powder inhibits the diffusion of cobalt into the nickel hydroxide core, the non-sintered nickel electrode of the invention exhibits a high utilization efficiency not only in an initial phase of charge-discharge cycling but over a long time of use. Moreover, because the yttrium metal powder and/or yttrium compound powder enhances the oxygen overpotential, the non-sintered nickel electrode for an alkaline storage battery according to the invention shows very satisfactory charge characteristics particularly at high temperatures.
摘要:
A battery module has a plurality of electrically connected unit cells fixed in a container. A buffer member is provided at the void between the inner wall of the container and the unit cell. By virtue of the buffer member in the battery module formed of a heat conductive elastic body, the requirement of vibration resistance can be met by the buffer member while the heat generated by the unit cell can be easily discharged via the buffer member. Thus, a battery module suppressed in degradation of the performance of the unit cell caused by heat can be provided.
摘要:
A nickel electrode for an alkaline storage battery in which an active material mainly containing nickel hydroxide is applied to a porous sintered nickel substrate, wherein a layer containing at least one hydroxide of an element selected from a group consisting of Ca, Sr, Sc, Y, lanthanoid, and Bi is formed on a surface of the active material thus applied to the sintered nickel substrate, or between the sintered nickel substrate and the active material.
摘要:
The invention provides a hydrogen absorbing alloy electrode obtained by the step P1 of preparing a hydrogen absorbing alloy powder containing cobalt and nickel, the step P2 of subjecting the surfaces of the alloy particles to a reduction treatment with high-temperature hydrogen by holding the powder in a high-temperature hydrogen atmosphere under the conditions of temperature, pressure and time sufficient to reduce oxides formed in a surface layer portion of each of the alloy particles, not melting the alloy particles and not permitting the alloy particles to absorb hydrogen, the step P3 of treating the resulting powder with an acid or alkali by immersing the powder in an acid or alkaline aqueous solution, followed by suction filtration, washing with water and drying, and the step P4 of applying the resulting power to an electrically conductive substrate and shaping the substrate in the form of the electrode. The electrode thus provided has higher activity than conventionally.