摘要:
The present invention provides a method for producing cycloalkanol and/or cycloalkanone, which comprises reacting cycloalkane with molecular oxygen in the presence of mesoporous silica, (1) the mesoporous silica containing at least one transition transition metal; (2) the mesoporous silica having such pore distribution that the ratio of a total pore volume of mesoporous silica particles having a pore size of 3 to 50 nm to a total pore volume of mesoporous silica particles having a pore size of 2 to 50 nm is 50% or more; and (3) the mesoporous silica being modified by an organic silicon compound.
摘要:
An object of the present invention is to provide a method capable of producing a cycloalkanol and/or a cycloalkanone with a favorable selectivity coefficient by oxidizing a cycloalkane with a favorable conversion ratio.Disclosed is a method for producing a cycloalkanol and/or a cycloalkanone, which comprises oxidizing a cycloalkane with oxygen in the presence of a mesoporous silica which contains at least one transition metal and has been also subjected to contact treatment with an amine and/or ammonia. Preferably, a crystal obtained by mixing a compound containing the metal, a silicon compound, a structure-directing agent and water is subjected to contact treatment with an amine and/or ammonia and then fired to obtain a mesoporous silica, and a cycloalkane is oxidized with oxygen in the presence of the mesoporous silica.
摘要:
The object of the present invention is to provide a process capable of producing cycloalkanol and/or cycloalkanone in excellent selectivity by oxidizing cycloalkane in a good degree of conversion. The present invention relates to a process for producing cycloalkanol and/or cycloalkanone, which comprises oxidizing cycloalkane with oxygen at 25 to 140° C. in the presence of mesoporous silica containing the group 8 and/or 9 element in the periodic table, wherein the content of phosphorus atom in the mesoporous silica is 0 to 4 mol % based on silicon atom. Said element is preferably cobalt and said mesoporous silica is preferably MCM-41.
摘要:
A method includes transferring a raw silicon material in a crucible and subjecting the raw silicon material in the crucible to thermal energy to form a melted silicon material at a temperature of less than 1400 Degrees Celsius, the melted silicon material having an exposed region bounded by an interior region of the crucible, subjecting an exposed inner region of the melted silicon material to an energy source to include an arc heater configured above the exposed region and to be spaced by a gap between the exposed region and a muzzle region of the arc heater to form a determined temperature profile within a vicinity of an inner region of the exposed melted silicon material while maintaining outer regions of the melted silicon material at a temperature below a melting point of the crucible, and removing impurities from the melted silicon material to form higher purity silicon.
摘要:
An object of the present invention is to provide a process capable of producing cycloalkanol and/or cycloalkanone with a favorable selectivity by oxidizing cycloalkane with a favorable conversion.Disclosed is a process for producing cycloalkanol and/or cycloalkanone, which comprises oxidizing cycloalkane with oxygen in the presence of mesoporous silica, wherein (1) the mesoporous silica contains at least one transition metal, and (2) a ratio of total volume of mesoporous silica particles having a particle diameter of 20 μm or less to total volume of entire mesoporous silica particles is 25% or more in the mesoporous silica.
摘要:
An object of the present invention is to provide a method capable of producing cycloalkanol and/or cycloalkanone with a favorable selectivity by oxidizing cycloalkane with a favorable conversion.A cycloalkanol and/or cycloalkanone are produced by oxidizing cycloalkane with oxygen in the presence of mesoporous silica which contains at least one metal selected from metals of Groups 5 to 10 of the Periodic Table and which is also subjected to a contact treatment with an organosilicon compound. The metal is preferably at least one metal selected from the group consisting of vanadium, chromium, manganese, iron, cobalt, ruthenium and palladium, and the mesoporous silica is preferably MCM-41 type mesoporous silica.
摘要:
A method improves yield of an upgraded metallurgical-grade (UMG) silicon purification process. In the UMG silicon purification process, in a reaction chamber, purification is performed on a silicon melt therein by one, all or a plurality of the following techniques in the same apparatus at the same time. The techniques includes a crucible ratio approach, the addition of water-soluble substances, the control of power, the control of vacuum pressure, the upward venting of exhaust, isolation by high-pressure gas jet, and carbon removal by sandblasting, thereby reducing oxygen, carbon and other impurities in the silicon melt, meeting a high-purity silicon standard of solar cells, increasing yield while maintaining low cost, and avoiding EMF reduction over time. An exhaust venting device for the purification process allows exhaust to be vented from the top of the reactor chamber, thereby avoiding backflow of exhaust into the silicon melt and erosion of the reactor.
摘要:
The present invention provides a method for forming high quality silicon material, e.g., polysilicon. The method includes transferring a raw silicon material in a crucible having an interior region. The crucible is made of a quartz or other suitable material, which is capable of withstanding a temperature of at least 1400 Degrees Celsius. The method includes subjecting the raw silicon material in the crucible to thermal energy to cause the raw silicon material to be melted into a liquid state to form a melted material at a temperature of less than about 1400 Degrees Celsius. Preferably, the melted material has an exposed region bounded by the interior region of the crucible. The method also includes subjecting an exposed inner region of the melted material to an energy source comprising an arc heater configured above the exposed region and spaced by a gap between the exposed region and a muzzle region of the arc heater to cause formation of determined temperature profile within a vicinity of an inner region of the exposed melted material while maintaining outer regions of the melted material at a temperature below a melting point of the quartz material of the crucible. Preferably, the method removes one or more impurities from the melted material to form a higher purity silicon material in the crucible.
摘要:
A method for purifying silicon bearing materials for photovoltaic applications includes providing metallurgical silicon into a crucible apparatus. The metallurgical silicon is subjected to at least a thermal process to cause the metallurgical silicon to change in state from a first state to a second state, the second stage being a molten state not exceeding 1500 Degrees Celsius. At least a first portion of impurities is caused to be removed from the metallurgical silicon in the molten state. The molten metallurgical silicon is cooled from a lower region to an upper region to cause the lower region to solidify while a second portion of impurities segregate and accumulate in a liquid state region. The liquid state region is solidified to form a resulting silicon structure having a purified region and an impurity region. The purified region is characterized by a purity of greater than 99.9999%.