摘要:
A lightning-protection fastener is provided that is capable of reliably preventing peeling off of an insulation layer during the operation of an aircraft and improving the anti-lightning-strike capability and reliability. There is a lightning-protection fastener that fastens a skin of an aircraft and a structural member positioned inside the skin, in which an insulation layer is melt adhered so as to cover one end surface of a head portion and also to mechanically engage with a fastener-side engagement portion (engagement portion) formed on the end surface.
摘要:
Provided is a lightning-protection fastener that is capable of reliably preventing peeling off of an insulation layer during the operation of an aircraft and of improving the anti-lightning-strike capability and reliability. There is a lightning-protection fastener that fastens a skin of an aircraft and a structural member positioned inside the skin, in which an insulation layer is melt adhered so as to cover one end surface of a head portion and also to mechanically engage with a fastener-side engagement portion (engagement portion) formed on the end surface.
摘要:
A cap (9) that is used in a fixing structure (1) for fixing a plurality of overlaid structural members (3) by means of a fastener (5) inserted into through-holes (3a) formed in the overlaid structural members and a collar (7) fastened onto a distal end (5a) of the fastener protruding from a surface of the structural members and that is disposed so as to surround the distal end of the fastener and the collar. The cap is attached, in a non-engaged state, to the distal end of the fastener and the collar, and a concave groove (9d) that accommodates a sealant (11) to be filled in a space formed between an inner peripheral surface (9e) and the surface of the structural members is formed in the inner peripheral surface.
摘要:
A long-life lightning protection fastener or the like to prevent explosion for aircrafts at low cost is provided, the fastener having a light weight, ensuring sufficient lightning protection, and having extremely less failures and high reliability. A ring-shaped ring member 40A made of resin is mounted on a collar 26. This ring member 40A is interposed between a member 22 and the collar 26 and is in intimate contact with both of the member 22 and the collar 26, thereby sealing an interface with the member 22 for sealing and preventing the occurrence of an arc at an outer perimeter edge of the collar 26.
摘要:
Provided is a coupling structure for airframe components that is capable of ensuring sufficient lightning protection capability. A conductive pattern part 40 made of a conductive material is formed around each fastener member 24 between wing surface panels 21A and 21B. The conductive pattern part 40 is formed, for example, around each of holes 21c and 21d on the plane on which the wing surface panel 21A and the wing surface panel 21B abut against each other. Then, the conductive pattern part 40 is pushed against both the wing surface panel 21A and the wing surface panel 21B by the fastening power of the fastener members 24, whereby electrical conduction between the wing surface panel 21A and the wing surface panel 21B can be achieved.
摘要:
An inner electrode for barrier film formation is an inner electrode for barrier film formation that is inserted inside a plastic container having an opening, supplies a medium gas to the inside of the plastic container, and supplies high frequency power to an outer electrode arranged outside the plastic container, thereby generating discharge plasma on the inner surface of the plastic container to form a barrier film on the inner surface of the plastic container, and that is provided with a gas supply pipe (101) having a gas flow path (101a) to supply a medium gas (G) and an insulating member (103) screwed into an end portion of the gas supply pipe (101) to be flush therewith and having a gas outlet (102) communicated with the gas flow path (101a).
摘要:
An optical system has fluoride compounds provided in an environment exposed by vacuum ultraviolet light or plasma light, which has higher photon energy than an absorption wavelength of a base stock of the optical system. 1-layer of a protective film of SiO2 or metal oxides having a film thickness of 2-20 nm is formed at least on the light irradiation side (inner side) of the optical system to prevent the stripping of the fluorine atoms from the surface of the optical system. In addition, the protective film is a 1-layer film selected from one of SiO2, MgO, TiO2, or ZrO2.
摘要:
An inner electrode for barrier film formation is an inner electrode for barrier film formation that is inserted inside a plastic container having an opening, supplies a medium gas to the inside of the plastic container, and supplies high frequency power to an outer electrode arranged outside the plastic container, thereby generating discharge plasma on the inner surface of the plastic container to form a barrier film on the inner surface of the plastic container, and that is provided with a gas supply pipe (101) having a gas flow path (101a) to supply a medium gas (G) and an insulating member (103) screwed into an end portion of the gas supply pipe (101) to be flush therewith and having a gas outlet (102) communicated with the gas flow path (101a).
摘要:
The objectives of the present invention are to prevent or inhibit the deterioration of optical systems that determine the longevity of an optical apparatus which delivers effects such as light transmission, diffraction, reflection, spectrum generation, and interference, and these combinations, and by so doing, decrease the frequency of maintenance operations such as window replacement and to reduce the costs for such operations. This invention is characterized by steps of creating a near vacuum zone with a presence of active energy to excite an oxidation reaction of carbon wherein the near vacuum zone faces the lighting surfaces of the optical system; generating negative ions or radicals in the near vacuum zone such as unstable chemical seeds containing oxygen atoms, such as OH radicals, OH− ions, ozone, O2− ions, O-radicals; and removing or reducing the accumulated carbon which deposits on the lighting surface, by reacting the deposited carbon with the negative ions or radicals. More specifically, the method according to this invention is characterized by the step of supplying active energy while supplying a flow of gases containing oxygen atoms such as water gas or oxidizing gas (for example, water vapor, oxygen, hydrogen peroxide, ozone or mixtures of said gases with inactive gases (including air)) into the near vacuum zone, thereby removing or reducing the accumulated carbon which deposits on the lighting surface by exciting the oxidation reaction of the accumulated carbon with the supplied active energy.
摘要:
The objectives of the present invention are to prevent or inhibit the deterioration of optical systems that determine the longevity of an optical apparatus which delivers effects such as light transmission, diffraction, reflection, spectrum generation, and interference, and these combinations, and by so doing, decrease the frequency of maintenance operations such as window replacement and to reduce the costs for such operations. This invention is characterized by steps of creating a near vacuum zone with a presence of active energy to excite an oxidation reaction of carbon wherein the near vacuum zone faces the lighting surfaces of the optical system; generating negative ions or radicals in the near vacuum zone such as unstable chemical seeds containing oxygen atoms, such as OH radicals, OH− ions, ozone, O2− ions, O-radicals; and removing or reducing the accumulated carbon which deposits on the lighting surface, by reacting the deposited carbon with the negative ions or radicals. More specifically, the method according to this invention is characterized by the step of supplying active energy while supplying a flow of gases containing oxygen atoms such as water gas or oxidizing gas (for example, water vapor, oxygen, hydrogen peroxide, ozone or mixtures of said gases with inactive gases (including air)) into the near vacuum zone, thereby removing or reducing the accumulated carbon which deposits on the lighting surface by exciting the oxidation reaction of the accumulated carbon with the supplied active energy.