摘要:
In a foreign matter inspection apparatus for a semiconductor wafer, a PMT which detects reflection light, an amplifier which amplifies a signal detected by the PMT and in which response characteristics of amplification are controlled by a control signal, an A/D converter which converts the signal amplified by the amplifier into a predetermined code and outputs the code, a control circuit which generates a control signal based on information of the semiconductor wafer having a correlation with the reflection light, and a data processing circuit which detects a foreign matter on the semiconductor wafer based on the code output from the A/D converter are provided.
摘要:
In a foreign matter inspection apparatus for a semiconductor wafer, a PMT which detects reflection light, an amplifier which amplifies a signal detected by the PMT and in which response characteristics of amplification are controlled by a control signal, an A/D converter which converts the signal amplified by the amplifier into a predetermined code and outputs the code, a control circuit which generates a control signal based on information of the semiconductor wafer having a correlation with the reflection light, and a data processing circuit which detects a foreign matter on the semiconductor wafer based on the code output from the A/D converter are provided.
摘要:
When the intensity of scattering light from a defect on a sample becomes very low according to the diameter of the defect, the dark noise from a sensor device itself accounts which a large proportion of the detected signal outputted from the sensor and thus it is difficult to detect minute defects. Furthermore, since a laser light source is pulsed into oscillation, pulse components from the laser light source are superimposed on the detected signal outputted from the sensor, and therefore it is difficult to detect defects with high accuracy. The present invention is a defect inspection device having irradiation means which producing pulsed operation and irradiating a surface of a sample with a laser beam, detection means which detecting scattering light generated at the surface of the sample in response to the irradiation provided by the irradiation means, and a processing portion which generating a delay signal based on the laser beam emitted by the irradiation means and processing the scattering light detected by the detection means using the delay signal.
摘要:
The detection part has: a subtraction module for calculating correction data from data of detection systems when a reference-voltage generation module applies a reference voltage to the detection systems; a data-holding module for holding the correction data; an addition module for making a correction of detection data; a comparison module for comparing the detection data with switching data; and a selector for switching data of the detection systems including data subjected to the correction according to the output of the comparison module.
摘要:
When the intensity of scattering light from a defect on a sample becomes very low according to the diameter of the defect, the dark noise from a sensor device itself accounts which a large proportion of the detected signal outputted from the sensor and thus it is difficult to detect minute defects. Furthermore, since a laser light source is pulsed into oscillation, pulse components from the laser light source are superimposed on the detected signal outputted from the sensor, and therefore it is difficult to detect defects with high accuracy. The present invention is a defect inspection device having irradiation means which producing pulsed operation and irradiating a surface of a sample with a laser beam, detection means which detecting scattering light generated at the surface of the sample in response to the irradiation provided by the irradiation means, and a processing portion which generating a delay signal based on the laser beam emitted by the irradiation means and processing the scattering light detected by the detection means using the delay signal.
摘要:
The detection part has: a subtraction module for calculating correction data from data of detection systems when a reference-voltage generation module applies a reference voltage to the detection systems; a data-holding module for holding the correction data; an addition module for making a correction of detection data; a comparison module for comparing the detection data with switching data; and a selector for switching data of the detection systems including data subjected to the correction according to the output of the comparison module.
摘要:
Provided are a photoelectric conversion element, wherein the processing speed can be increased and resolution can be changed without increasing cost, and a defect inspecting apparatus and a defect inspecting method using the photoelectric conversion element. A photoelectric conversion element having a plurality of sensor pixels has a multiplexer and a plurality of horizontal transfer registers. Sensor pixels are divided into a plurality of blocks such that the sensor pixels correspond to each of the horizontal transfer registers. The photoelectric conversion element is configured such that charges of the blocks are read by means of the multiplexer via respective corresponding horizontal transfer registers, and are outputted via the multiplexer.
摘要:
In related art, consideration is not given to that a spatial distribution of scattered light changes in various direction such as forward/backward/sideways according to a difference in micro roughness. Particularly, although a step-terrace structure appearing on an epitaxial growth wafer produces anisotropy in the scattered light distribution, consideration is not given to this point in the related art. The invention includes a process in which light is illuminated to a sample surface, plural detection optical systems mutually different in directions of optical axes detect a spatial distribution of scattered light, and a spatial frequency spectrum of the sample surface is calculated.
摘要:
In a defect inspecting apparatus, the strength of a fatal defect signal decreases due to miniaturization. Thus, in order to assure a high SN ratio, it is necessary to reduce noises caused by scattered light from a wafer. Roughness of a pattern edge and surface roughness which serve as a scattered-light source are spread over the entire wafer. The present invention has discovered the fact that reduction of an illuminated area is a technique effective for decreasing noises. That is to say, the present invention has discovered the fact that creation of an illuminated area having a spot shape and reduction of the dimension of a spot beam are effective. A plurality of temporally and spatially divided spot beams are radiated to the wafer serving as a sample.
摘要:
Reflected light caused by the state of the surface of a wafer, a foreign material, or a defect is superimposed on a haze frequency component caused by the type and thickness of a film or a surface irregularity. In order to detect a haze frequency component caused by a haze present on the surface of an object to be inspected, light propagating from the object to be inspected is detected and converted into an electric signal. The electric signal is sampled at a predetermined sampling time interval and converted into digital data. A frequency component caused by a foreign material, a defect or the like is separated from the digital data to ensure that a haze frequency component is selected. The haze frequency component is caused by a stain attached to the surface of the wafer, hazy tarnish, a surface irregularity or the like.