摘要:
A pattern correcting method of an embodiment computes a distribution of pattern coverages on a design layout of a circuit pattern in the vicinity of a position that becomes an error pattern in a case where an on-substrate pattern is formed. Then, an area on the design layout in which a difference in the distribution of the pattern coverages becomes small by adding an addition pattern is set as an addition area. Next, addition pattern candidates to be added to the addition area are generated, an addition pattern to be added to the design layout is selected from the candidates on the basis of a predetermined selection criterion, and the addition pattern is added to the addition area.
摘要:
According to the embodiments, a first representative point is set on outline pattern data on a pattern formed in a process before a processed pattern. Then, a minimum distance from the first representative point to a peripheral pattern is calculated. Then, area of a region with no pattern, which is sandwiched by the first representative point and the peripheral pattern, in a region within a predetermined range from the first representative point is calculated. Then, it is determined whether the first representative point becomes a processing failure by using the minimum distance and the area.
摘要:
According to an aspect of the present invention, there is provided a method of manufacturing a semiconductor device, the method including: forming a first film on a target film; forming resist patterns on the first film; processing the first film with the resist patterns to form first patterns including: periodic patterns; and aperiodic patterns; removing the resist patterns; forming a second film over the target film; processing the second film to form second side wall patterns on side walls of the first patterns; removing the periodic patterns; and processing the target film with the aperiodic patterns and the second side wall patterns, thereby forming a target patterns including: periodic target patterns; aperiodic target patterns; and dummy patterns arranged between the periodic target patterns and the aperiodic patterns and arranged periodically with the periodic target patterns.
摘要:
According to one embodiment, a semiconductor device includes interconnects extending from a element formation area to the drawing area, and connected with semiconductor elements in the element formation area and connected with contacts in the drawing area. The interconnects are formed based on a pattern of a (n+1)th second sidewall film matching a pattern of a nth (where n is an integer of 1 or more) first sidewall film on a lateral surface of a sacrificial layer. A first dimension matching an interconnect width of the interconnects and an interconnects interval in the element formation area is (k1/2n)×(λ/NA) or less when an exposure wavelength of an exposure device is λ, a numerical aperture of a lens of the exposure device is NA and a process parameter is k1. A second dimension matching an interconnect interval in the drawing area is greater than the first dimension.
摘要:
A method of manufacturing a semiconductor device, which forms a pattern by performing pattern transformation steps multiple times, comprises setting finished pattern sizes for patterns to be formed in each consecutive two pattern transformation steps among the plurality of pattern transformation steps based on a possible total amount of in-plane size variation of the patterns to be formed in the consecutive two pattern transformation steps.
摘要:
Pattern formation simulations are performed based on design layout data subjected to OPC processing with a plurality of process parameters set in process conditions. A worst condition of the process conditions is calculated based on risk points extracted from simulation results. The design layout data or the OPC processing is changed such that when a pattern is formed under the worst condition based on the changed design layout data or the changed OPC processing a number of the risk points or a risk degree of the risk points of the pattern is smaller than the simulation result.
摘要:
A pattern generation method includes: acquiring a first design constraint for first patterns to be formed on a process target film by a first process, the first design constraint using, as indices, a pattern width of an arbitrary one of the first patterns, and a space between the arbitrary pattern and a pattern adjacent to the arbitrary pattern; correcting the first design constraint in accordance with pattern conversion by the second process, and thereby acquiring a second design constraint for the second pattern which uses, as indices, two patterns on both sides of a predetermined pattern space of the second pattern; judging whether the design pattern fulfils the second design constraint; and changing the design pattern so as to correspond to a value allowed by the second design constraint when the design constraint is not fulfilled.
摘要:
A method of manufacturing a semiconductor device, which forms a pattern by performing pattern transformation steps multiple times, comprises setting finished pattern sizes for patterns to be formed in each consecutive two pattern transformation steps among the plurality of pattern transformation steps based on a possible total amount of in-plane size variation of the patterns to be formed in the consecutive two pattern transformation steps.
摘要:
A method of manufacturing a semiconductor device, which forms a pattern by performing pattern transformation steps multiple times, comprises setting finished pattern sizes for patterns to be formed in each consecutive two pattern transformation steps among the plurality of pattern transformation steps based on a possible total amount of in-plane size variation of the patterns to be formed in the consecutive two pattern transformation steps.
摘要:
A mask verification method includes setting optical parameters, verifying whether a pattern, which is obtained when a mask pattern other than a reference pattern of patterns on a mask is transferred on a substrate with use of the set optical parameters, satisfies dimensional specifications, and varying, when the pattern which is obtained when the mask pattern is transferred on the substrate is determined to fail to satisfy the dimensional specifications, the optical parameters at the time of transfer such that the pattern, which is obtained when the reference pattern is transferred on the substrate, satisfies a target dimensional condition, and verifying whether a pattern, which is obtained when the mask pattern other than the reference pattern of the patterns on the mask is transferred on the substrate with use of the varied optical parameters, satisfies the dimensional specifications.