摘要:
A thermal transfer film comprises a coloring layer formed on a substrate film via an intermediate layer, wherein the intermediate layer contains a thermally fusible substance and a non-transferable binder resin, the melt viscosity of the thermally fusible substance in the temperature range 15 to 25° C. higher than the fuse peak temperature of the thermally fusible substance is in the range of 100 to 1000 mPa·s, the fuse peak temperature of the thermally fusible substance is in the range of 50 to 110° C., the crystallization peak temperature of the thermally fusible substance is in the range of −20 to 100 ° C., the crystallization peak temperature of the thermally fusible substance is lower than the fuse peak temperature by 10° C. or more, and the softening temperature of the binder resin measured by the ring and ball method is in the range of 130 to 400° C. This thermal transfer film is capable of forming a printed product with a good printing quality.
摘要:
The present invention is for providing a thermal transfer film capable of providing a vivid print without generation of a void, and an image forming method using the same. The thermal transfer film comprises a coloring layer formed on a substrate film via an intermediate layer, wherein the intermediate layer comprises materials according to either one of the following combinations: (1) a polycaprolactone resin having a 100-1,000 mPa·s melt viscosity at 75° C., and a binder resin having a 130-400° C. extrapolation fuse starting temperature; (2) a thermally fusible substance having a 100-1,000 mPa·s melt viscosity at 75° C., and a binder resin having a 150-400° C. extrapolation fuse starting temperature, (3) a polycaprolactone resin having a 100-1,000 mPa·s melt viscosity at 75° C., and a non-transferable binder resin having a 130-400° C softening temperature; and (4) a thermally fusible substance having a 100-1,000 mPa·s melt viscosity at 75° C., and a non-transferable binder resin having a 130-400° C. softening temperature.
摘要:
A thermal transfer film comprises a coloring layer formed on a substrate film via an intermediate layer, wherein the intermediate layer contains a thermally fusible substance and a non-transferable binder resin, the melt viscosity of the thermally fusible substance in the temperature range 15 to 25° C. higher than the fuse peak temperature of the thermally fusible substance is in the range of 100 to 1000 mPa·s, the fuse peak temperature of the thermally fusible substance is in the range of 50 to 110° C., the crystallization peak temperature of the thermally fusible substance is in the range of −20 to 100° C., the crystallization peak temperature of the thermally fusible substance is lower than the fuse peak temperature by 10° C. or more, and the softening temperature of the binder resin measured by the ring and ball method is in the range of 130 to 400° C. This thermal transfer film is capable of forming a printed product with a good printing quality.
摘要:
A splitter includes, in parallel between trunk terminals and branch terminals, a signal branching circuit that blocks distributed power and passes a PLC communication signal and a power branching circuit that blocks the communication signal and passes the distributed power. In the signal branching circuit, impedance viewed from the branch terminal side is matched with characteristic impedance of a power line and impedance viewed from the trunk terminal side is higher than impedance viewed from the branch terminal side, in the frequency band of the communication signal. In the power branching circuit, input/output impedance is set to be sufficiently higher than the impedance of the signal branching circuit viewed from the trunk terminal side, in the frequency band of the communication signal.
摘要:
The object of the present invention is to provide an anti-obesity agent which contains a tea-derived component and which is safe and does not compromise the flavor of foods and beverages.According to the present invention, a safe and palatable anti-obesity agent can be provided by incorporating a benzotropolone ring-containing compound which has tea-derived, high inhibitory activities against lipase and alfa-glucosidase. The anti-obesity agent of the present invention does not compromise the flavor of foods and beverage, has palatability, and can be used in various use applications including foods and beverages intended for health enhancement such as reduction in triglycerides.
摘要:
A mixture of polyfluoroalkadienes represented by the general formulae: CF3(CF2)nCF═CH(CF2)m+1CH═CH2 [Ia] and CF3(CF2)n+1CH═CF(CF2)mCH═CH2 [Ib], wherein n is an integer of 0 to 5, and m is an integer of 0 to 6, is obtained as a mixture fraction of products [Ia] and [Ib] by reacting a polyfluoroalkyl iodide represented by the general formula: CF3(CF2)n+1CH2(CF2)m+1(CH2CH2)I [II], with an organic basic compound. The polyfluoroalkadiene mixture is compounds having a perfluoroalkyl group in which the number of successive CF2 groups is 5 or less, and is effectively used as a copolymerizable monomer in the production of resinous or elastomeric fluorine-containing copolymers, which are used as active ingredients of surface-treating agents, such as water- and oil-repellents and mold-release agents.
摘要:
The object of the present invention is to provide an anti-obesity agent which contains a tea-derived component and which is safe and does not compromise the flavor of foods and beverages.According to the present invention, a safe and palatable anti-obesity agent can be provided by incorporating a benzotropolone ring-containing compound which has tea-derived, high inhibitory activities against lipase and alfa-glucosidase. The anti-obesity agent of the present invention does not compromise the flavor of foods and beverage, has palatability, and can be used in various use applications including foods and beverages intended for health enhancement such as reduction in triglycerides.
摘要:
Disclosed is a mixture of fluoroolefin iodides represented by the general formulae: CnF2n+1CF2CH═CF(CF2CF2)mI [Ia] and CnF2n+1CF═CHCF2(CF2CF2)mI [Ib] wherein n is an integer of 0 to 5, and m is an integer of 1 to 3. The fluoroolefin iodide mixture is produced by subjecting a fluoroalkyl iodide represented by the general formula: Cn2n+1CF2CH2CF2(CF2CF2)mI [II] wherein n is an integer of 0 to 5, and m is an integer of 1 to 3, to an HF-elimination reaction in the presence of a basic compound.
摘要:
Disclosed is a peroxide-crosslinkable fluoroelastomer obtained by copolymerization of 0.1 to 20 mol % of a mixture of fluoroolefin iodides represented by the general formulae: CnF2n+1CF2CH═CF(CF2CF2)mI [Ia] and CnF2n+1CF═CHCF2(CF2CF2)mI [Ib], wherein n is an integer of 0 to 5, and m is an integer of 1 to 3. The peroxide-crosslinkable fluoroelastomer is copolymerized with a monomer having a side chain containing a peroxide-crosslinkable halogen atom, and has excellent vulcanizate physical properties and improved compression set characteristics when subjected to peroxide crosslinking.
摘要:
In this invention, even if final code data is to be generated by selectively discarding code data for each bitplane, errors due to bitplane rounding down operation can be suppressed from being gradually accumulated in predicted data such as P- and B-pictures, thereby preventing a deterioration in image quality. For this purpose, a block segmentation unit (31) segments an input frame into a plurality of blocks, and supplies the respective blocks to a difference computing unit (32). The difference computing unit (32) outputs the blocks to a DWT unit (33) without any change when the intra-frame coding mode is set. When the inter-frame coding mode is set, the difference computing unit (32) outputs the result obtained by computing a difference from predicted data from a motion compensation unit (42) to the DWT unit (33). The frequency component data obtained by the DWT unit (33) and a quantization unit (34) is entropy-coded by an entropy coding unit (35), and a bitplane formed by bit information at the bit position of each component value is coded. A bitplane round-down unit (36) rounds down the code data of bitplanes from the least significant position to an upper bit position such that the resultant code amount becomes equal to or less than a target code amount. A code forming unit then generates code data. Only when the intra-frame coding mode is set, a dequantization unit (39) and inverse DWT unit (40) are executed to update a frame memory (41).