摘要:
There is provided a conductive curable resin composition comprising (A) a curable resin composition comprising an elastomer with a Mooney viscosity (ML1+4 (100° C.)) of 25 or greater at 2-80 wt % and (B) a carbon material, with a weight ratio of component (A) to component (B) of 70-5:30-95. The curable resin composition of component (A) preferably comprises (A1) an elastomer at 80-2 wt %, (A2) a radical reactive resin at 20-98 wt % and (A3) an organic peroxide at 0.2-10 parts by weight to 100 parts by weight of (A1+A2). Also provided are a process for production of a conductive cured resin by shaping and curing of the conductive curable resin composition, and a fuel cell separator, an assembly for a cell, an electrode or a heat releasing plate, obtained thereby.
摘要:
There is provided a conductive curable resin composition comprising (A) a curable resin composition comprising an elastomer with a Mooney viscosity (ML1+4 (100° C.)) of 25 or greater at 2-80 wt % and (B) a carbon material, with a weight ratio of component (A) to component (B) of 70-5:30-95. The curable resin composition of component (A) preferably comprises (A1) an elastomer at 80-2 wt %, (A2) a radical reactive resin at 20-98 wt % and (A3) an organic peroxide at 0.2-10 parts by weight to 100 parts by weight of (A1+A2). Also provided are a process for production of a conductive cured resin by shaping and curing of the conductive curable resin composition, and a fuel cell separator, an assembly for a cell, an electrode or a heat releasing plate, obtained thereby.
摘要:
There is provided a conductive curable resin composition comprising (A) a curable resin composition comprising an elastomer with a Mooney viscosity (ML1+4 (100° C.)) of 25 or greater at 2-80 wt % and (B) a carbon material, with a weight ratio of component (A) to component (B) of 70-5:30-95. The curable resin composition of component (A) preferably comprises (A1) an elastomer at 80-2 wt %, (A2) a radical reactive resin at 20-98 wt % and (A3) an organic peroxide at 0.2-10 parts by weight to 100 parts by weight of (A1+A2). Also provided are a process for production of a conductive cured resin by shaping and curing of the conductive curable resin composition, and a fuel cell separator, an assembly for a cell, an electrode or a heat releasing plate, obtained thereby.
摘要:
An electroconductive curable resin composition comprising: (A) a curable resin and/or curable resin composition having a viscosity of from 0.1 to 1,000 Pa.s at 80° C. and from 0.01 to 100 Pa.s at 100° C.; and (B) a carbonaceous material at a ratio of 80 to 1:20 to 99 in terms of the mass ratio of component (A) to component (B). Such a resin composition is free from separation between a carbonaceous material and a resin at the mold working, excellent in the moldability (e.g., compression molding, transfer molding, injection molding, injection-compression molding) and capable of providing a cured product having high electroconductivity.
摘要:
A high-performance separator for a fuel cell is provided that includes an electrically conducting flow path part and an integrated insulating outer circumferential part surrounding the flow path part. The flow path part includes an electrically conducting resin composition including a carbonaceous material (A) and a thermoplastic resin composition (B) at a mass ratio (A)/(B) of 1 to 20 with the total mass of (A) and (B) accounting for 80 to 100 mass % in the composition. The flow path part has a corrugated shape having a recess and a projection on each of front and back surfaces thereof, where the recess constitutes a groove for a flow path, and a thickness of 0.05 to 0.5 mm and a maximum thickness/minimum thickness ratio of 1 to 3. The insulating outer circumferential part includes an insulating thermoplastic resin composition having a volume resistivity of 1010 Ωcm or more.
摘要:
Provided is a fuel cell separator which can achieve a stable power generation over a prolonged period of time and a method of producing the fuel cell separator. The fuel cell separator has a recess for gas flow path whose surface is roughened in such a manner that the arithmetic mean roughness Ra is 0.5 to 10 μm, and the recess for gas flow path is brought into contact with a fluorine-containing gas or a gas containing both fluorine and oxygen. Whereby a hydrophilic surface most suitable for prevention of flooding is formed and a fuel cell separator which can achieve a stable power generation over a prolonged period of time can be obtained. The thus obtained fuel cell separator can retain a uniform liquid film formed on the surface thereof for at least 10 seconds when a test piece prepared from the fuel cell separator is immersed in water for 30 seconds and pulled out therefrom to a position at not less than 1 cm from the water surface within 1 second.
摘要:
A curable composition comprising: (A) a hydrocarbon compound having a plurality of carbon-carbon double bonds, and (B) a carbonaceous material. The hydrocarbon compound may preferably be 1,2-polybutadiene. The curable composition may be used for a fuel cell separator.
摘要:
[Problem] To provide a substrate processing apparatus capable of preventing adherence of hydrogen fluoride to an inner surface the like of a chamber.[Means for Solving] An apparatus housing and processing a substrate W in a chamber includes a hydrogen fluoride gas supply path 61 for supplying a hydrogen fluoride gas into a chamber 40, wherein a part or whole of an inner surface of the chamber 40 is formed of Al or Al alloy which has not been subjected to surface oxidation treatment. The chamber 40 includes a lid 52 closing an upper opening of a chamber main body 51, and at least an inner surface of the lid 52 is formed of the Al or Al alloy which has not been subjected to alumite treatment.
摘要:
An electroconductive resin composition, comprising at least: a multi-component polymer-type resin binder (A) comprising a dispersed phase and a continuous phase, and having a number-average particle size of dispersed phase of 0.001-2 μm, and an electroconductive material (B) in the form of powder and/or fiber. The electroconductive resin composition may preferably be used for a fuel cell separator.
摘要:
Semiconductor wafers are cleaned by placing the semiconductor wafers in a processing vessel, forming a pure water film on the surfaces of the wafers, forming an ozonic water film by dissolving ozone gas in the pure water film, and removing resist films formed on the wafers by the agency of the ozonic water film. The pure water film is formed by condensing steam on the surfaces of the wafers. The resist films formed on the surfaces of the wafers can be removed by also using hydroxyl radicals produced by interaction between steam and ozone gas supplied into the processing vessel. Thus, the resist films can be removed highly effectively.