Abstract:
A wind system for converting wind energy including at least one kite that can be driven from ground immersed in at least one wind current and a vertical-axis wind turbine placed at ground level. The wind turbine includes at least one arm connected through two ropes to the kite, the kite configured to be driven through the turbine to rotate the arm and convert wind energy into electric energy through at least one generator/motor system operating as a generator that co-operates with the turbine. The ropes are configured both to transmit mechanical energy from and to the kites, and to control the flight trajectory of the kites. A process produces electric energy through such a system.
Abstract:
A process for automatically controlling the flight of at least one power wing airfoil, through a system for automatically controlling a flight of at least one power wing airfoil, the at least one power wing airfoil being controlled by a driving unit equipped with two winches to which the power wing airfoil is connected by two respective driving cables.
Abstract:
A quick-recharging energy feeding system is described, for a transport vehicle with electric traction, performed in every foreseen stop of the vehicle by means of a connection that can be directly and automatically performed next to such stop, through a road bed, comprising at least one recharging subsystem arranged on the vehicle and at least one stationary system cooperating with the recharging subsystem for transmitting electric energy.
Abstract:
A wind system (1) is described for converting energy comprising at least one kite (2) that can be driven from ground immersed in at least one wind current (W) and at least one module (5) adapted to translate on at least one rail (6; 7) placed next to the ground, such module (5) being connected through at least one rope (4) to the kite (2), in order to drag the module (5) on the rail (6; 7) and to perform a conversion of wind energy into electric energy through at least one electric energy generating system cooperating with module (5) and rail (6; I) 1 such rope (4) being adapted both to transmit mechanical energy from and to the kite (2) and to control the flight trajectory of the kite (2).
Abstract:
A rope (3) is described for a tropospheric aeolian generator (1) composed, in length, of at least one first sector (4) adapted to resist to repeated flexure cycles, having a safety coefficient (S1), a diameter D(b1) and an aerodynamic resistance coefficient (CD1); at least one second sector (5) adapted to resist to repeated traction cycles with great load, having a safety coefficient S2
Abstract:
An aeolian system is described for converting energy comprising at least one power wing profile (30) which can be driven from the ground immersed in at least one aeolian current (W) and a basic platform (1) for controlling the wing profile (30) and generating electric energy placed at ground level and connected through two ropes (2) to the power wing profile (30), such basic platform (1) being adapted to drive the wing profile (30) and to generate electric energy, such two ropes (2) being adapted to transmit forces from and to the wing profile (30) and to be used both for controlling a flight trajectory of the wing profile (30) and for generating energy. A process is further described for producing electric energy through such aeolian system.
Abstract:
A rope (3) is described for a tropospheric aeolian generator (1) composed, in length, of at least one first sector (4) adapted to resist to repeated flexure cycles, having a safety coefficient (S1), a diameter D(b1) and an aerodynamic resistance coefficient (CD1); at least one second sector (5) adapted to resist to repeated traction cycles with great load, having a safety coefficient S2
Abstract:
A wind system (1) is described for converting energy comprising at least one kite (2) that can be driven from ground immersed in at least one wind current (W) and at least one module (5) adapted to translate on at least one rail (6; 7) placed next to the ground, such module (5) being connected through at least one rope (4) to the kite (2), in order to drag the module (5) on the rail (6; 7) and to perform a conversion of wind energy into electric energy through at least one electric energy generating system cooperating with module (5) and rail (6; I) 1 such rope (4) being adapted both to transmit mechanical energy from and to the kite (2) and to control the flight trajectory of the kite (2).
Abstract:
An aeolian system is described for converting energy comprising at least one power wing profile (30) which can be driven from the ground immersed in at least one aeolian current (W) and a basic platform (1) for controlling the wing profile (30) and generating electric energy placed at ground level and connected through two ropes (2) to the power wing profile (30), such basic platform (1) being adapted to drive the wing profile (30) and to generate electric energy, such two ropes (2) being adapted to transmit forces from and to the wing profile (30) and to be used both for controlling a flight trajectory of the wing profile (30) and for generating energy. A process is further described for producing electric energy through such aeolian system.
Abstract:
An infrastructure for tropospheric aeolian generator is described, which comprises a rotary basement (1), at least one orientable arm (2), at least one ventilation plant (3), at least one system (4) for supporting at least one wing (7), and a driving system (5) of control cables (6) of the wing (7).