摘要:
A method is provided for continuously monitoring for the presence or quantity of an analyte in a flowing liquid stream. The method involves binding an analyte-specific receptor species to the surface of a piezoelectric substrate, contacting the surface bound receptor species with the flowing liquid stream and quantitating the presence of the analyte. A novel apparatus for detecting the presence of an analyte in a liquid chromatography eluant is provided as well.
摘要:
A system for accurate and precise measurements of analyte(s) in a system. The measurement system comprises piezoelectric surface wave sample devices, at least one piezoelectric surface wave reference device, and the measurement instrument.
摘要:
A mass biosensor method provides enhanced quantification of analyte concentrations in a sample. In a direct approach, an analyte is derivatized to form an analyte chelate and then specifically bound to a sensor. In an indirect approach, a complement of the analyte is derivatized to form a complement chelate which is then bound to a sensor. In a direct/indirect hybrid approach, an analog of the analyte is derivatized to form an analog chelate that is bound to a sensor in competition with the sample analyte. In all three approaches, mass measurements taken as the ligand chelate attaches to the sensor permit the concentration of the analyte in the sample to be calculated. Once measurement is completed, a dissociation treatment is applied to dissociate the derivatized species from the sensor so that the sensor can be reused. The effects of the dissociation treatment can be monitored using phosphorescence detection. The results obtained during monitoring can be compared with a predetermined threshold to ensure complete dissociation while avoiding alteration of the sensor surface. This procedure permits precision renewal of a sensor to maximize the number of times a sensor can be used. Moreover, this method allows quantification to be performed using the same sensor and coating in place during calibration, minimizing systematic errors and enhancing quantification accuracy.
摘要:
A dimensionally-stable organosilicon material composition and method for producing the material composition including noncrosslinkable, continuous phase silicone with silica filler material dispersed therethorugh, and having dissolved therein a variably-radiative material (e.g., ruthenium dye) responsive to the concentration of a selected analyte (e.g., oxygen), and the products of a reaction between water and a modifier material selected for establishing the sensitivity of said variably-radiative material to the selected analyte.
摘要:
A dimensionally-stable organosilicon material composition and method for producing the material composition including non-crosslinkable, continuous phase silicone with silica filler material dispersed therethrough, and having dissolved therein a variably-radiative material (e.g., ruthenium dye) responsive to the concentration of a selected analyte (e.g., oxygen), and the products of a reaction between water and a modifier material selected for establishing the sensitivity of said variably-radiative material to the selected analyte.
摘要:
In a process for producing a dye-containing polymer to be used for spectroscopic sample analysis, monomers are polymerized in the presence of a dye to form a block of bulk polymer. The bulk polymer or slices thereof can be easily measured in a spectrometer in order to determine the spectroscopic properties of the dye containing polymer. The bulk polymer is subsequently ground to particles which can be used to fill a fiber optical sensor. Since the particles have the same optical properties as the bulk polymer, the properties of the particles of dye-containing polymer of the sensor can be accurately determined from the bulk polymer.