摘要:
An embodiment includes a sensor coupled to a sternal closure wire. The sternal closure wire holds two sternum portions of a patient adjacent to one another and the first sensor senses a biological signal of the patient. An embodiment includes a current source coupled to a sternal closure wire. The sternal closure wire holds two sternum portions of a patient adjacent to one another, and the current source delivers an electrical current to the patient via the sternal closure wire. Other embodiments are described herein.
摘要:
An introducer comprise a sheath for introducing a catheter into a blood vessel, a plurality of electrodes on the sheath, and an impedance assessment unit provided on the sheath and connected to the electrodes. The impedance assessment unit fixes one of a current or voltage across a first pair of the electrodes and measures the other of the current or voltage across a second pair of electrodes.
摘要:
An introducer comprise a sheath for introducing a catheter into a blood vessel, a plurality of electrodes on the sheath, and an impedance assessment unit provided on the sheath and connected to the electrodes. The impedance assessment unit fixes one of a current or voltage across a first pair of the electrodes and measures the other of the current or voltage across a second pair of electrodes.
摘要:
Catheter ablation systems are used to isolate the Left Atrial Appendage (“LAA”), or portions of the LAA, by using balloons. The systems deliver an ablation fluid such as alcohol in order to destroy the LAA tissue isolated between the balloons, deliver saline to dilute the ablation fluid, and remove excess fluid and particulates by suction to prevent excess residual alcohol from remaining in the LAA.
摘要:
An embodiment of the invention includes a system for the guidance of a catheter to different regions of tissue (e.g., cardiac tissue) for therapy (e.g., ablation therapy). A plurality of electrodes, such as an array of electrodes, may be configured to perform various tasks. First, some electrodes may measure cardiac polarization. Second, some electrodes may function as magnets (e.g., electromagnets) that guide a separate ablation catheter towards the electromagnetic electrodes. These electromagnetic electrodes may be positioned adjacent tissue that is now recognized (possibly due to the electrodes that measure cardiac polarization) as being in need of ablation therapy. Thus, the electromagnetic electrodes may cooperate with an ablation catheter to render a system with magnetic guidance capabilities using intracardiac magnetic field generation. The system may control electromagnetic forces from the array of electrodes to guide the ablation catheter tip to the desired therapy location. Other embodiments are described herein.
摘要:
An apparatus comprises a catheter comprising a first electrode. The apparatus also comprises a second electrode electrically attached to a person and coupled to the first electrode via the person's tissue. Logic is coupled to the electrodes and generates an electrical signal that is provided through the electrodes and computes an impedance or conduction velocity associated with the electrodes based on the electrical signal. The logic stores a threshold against which said computed impedance or conduction velocity is compared by said logic.
摘要:
In an embodiment a sheath allows one to simultaneously ablate tissue, using a catheter located in the sheath, and remove fluid from a patient's pericardial space, via the same sheath, all without withdrawing the ablation catheter from the sheath. Applying pressure (positive or negative) to fenestrations in the sheath may allow one to withdraw fluid from the space, navigate the sheath within the space, and/or adhere the sheath to tissue in the space. Other embodiments are described herein.
摘要:
A system including a stent further including a plurality of conductive struts disposed within a non-conductive body. The stent is configured to exclude an aneurysm within a blood vessel of a person. In addition, the system includes a first electrode and a second electrode. Further, the system includes a controller coupled to the first electrode and second electrode. The controller is configured to measure an impedance between the first electrode and the second electrode and across tissue surrounding the stent to determine if a leak has occurred between the stent and the aneurysm.
摘要:
An embodiment of the invention includes a system for the guidance of a catheter to different regions of tissue (e.g., cardiac tissue) for therapy (e.g., ablation therapy). A plurality of electrodes, such as an array of electrodes, may be configured to perform various tasks. First, some electrodes may measure cardiac polarization. Second, some electrodes may function as magnets (e.g., electromagnets) that guide a separate ablation catheter towards the electromagnetic electrodes. These electromagnetic electrodes may be positioned adjacent tissue that is now recognized (possibly due to the electrodes that measure cardiac polarization) as being in need of ablation therapy. Thus, the electromagnetic electrodes may cooperate with an ablation catheter to render a system with magnetic guidance capabilities using intracardiac magnetic field generation. The system may control electromagnetic forces from the array of electrodes to guide the ablation catheter tip to the desired therapy location. Other embodiments are described herein.
摘要:
Herein provided are methods for optimizing the atrio-ventricular (A-V) delay for efficacious delivery of cardiac resynchronization therapy. The A-V delay is set such that pacing-induced left ventricular contraction occurs following completion of left atrial (LA) contraction. This maximizes left ventricular filling (preload) which theoretically results in optimal LV contraction via the Frank-Starling mechanism. In CRT devices, the programmed A-V delay starts with detection of electrical activity in the right atrium (RA). Thus, a major component of the A-V delay is the time required for inter-atrial conduction time (IACT) from the RA to the LA. This IACT can be measured during implantation as the time from the atrial lead stimulation artifact to local electrograms in a coronary sinus (CS) catheter. Assuming that the beginning of LA contraction closely corresponds with the beginning of LA electrical activity, the optimal AV delay should be related to the time between the start of RA electrical activity and the start of LA electrical activity plus the duration of LA atrial contraction. Thus the inventors hypothesized that during atrial pacing the IACT measured at implantation correlated with the echocardiographically defined optimal paced AV delay (PAV).