摘要:
The invention provides a metal-air battery-powered electric vehicle of the type having a motor powered by a plurality of metal-air cells wherein air is continuously provided to the cells by a blower system energized from a power source, in combination with a collision-activated switch for disconnecting the air blower system from the power source, wherein upon activation of the switch the air in the cell is immediately depleted and the battery is rendered substantially inert in less than 5 seconds.
摘要:
The invention provides a rigid reusable transport and storage vessel for retaining a plurality of anode cassettes of pressed zinc particles saturated with aqueous alkaline solution, and utilizable as an electric fuel in a zinc-air battery, the vessel having a sealably covered aperture and being provided with a hydrogen recombination device, the device being provided with an external surface at least part of which projects into the air surrounding the vessel for venting any hydrogen produced by the anode cassettes into the air surrounding the vessel, and the vessel being internally compartmentalized to contain a plurality of sealable internal compartments for retaining the plurality of anode cassettes, each of the internal compartments being provided with a gas non-return valve venting from the internal compartment to an interior space of the vessel for venting generated hydrogen from the cassettes via the gas non-return valve to the vessel for elimination via the hydrogen recombination device while preventing ingress of air to the internal compartments, whereby hydrogen internally generated and emitted from the vessel is safely combined with the oxygen in the air surrounding the vessel, thus eliminating potentially explosive hydrogen.
摘要:
A mechanically rechargeable electric battery includes at least one electrical cell which has a pair of generally planar outer electrodes configured to define therebetween an interior space for an electrical power storage medium, and inner electrodes removably-mounted between the pair of outer electrodes so as to be in electrically conductive contact with the electrical power storage medium and configured to provide mechanical support for the electrical power storage medium and to be removable as a unit therewith from the cell. The cell is a metal-gas battery cell and the electrical power storage medium contained in the interior space contains a slurry containing active porous zinc particles saturated with an electrolyte solution. The outer electrodes define an opening communicating with the interior space, and the inner electrodes are configured for their removal from the interior space, via the opening, thereby enabling the simultaneous removal of the inner electrodes and the slurry from the interior space.
摘要:
The invention provides a multi-cell, sealed, cooled, zinc-oxygen battery, comprising a container containing a plurality of bi-cells, each cell having a housing provided with two major surfaces and accommodating a pair of oppositely-disposed, spaced-apart, air-permeable, liquid-impermeable cathodes in the form of oxygen-reduction electrodes, and defining between themselves a cavity configured to accommodate an anode of the battery and electrolyte, substantial portions of the major surfaces of the housing being removed, thus exposing major portions of the oxygen-reduction electrodes, and wherein two major surfaces are partly recessed in such a way as to form, in conjunction with a similarly-recessed outer surface of a major wall of an adjacent cell housing, an inter-cathode gas space between adjacent cells with a plurality of oxygen access openings leading thereto; an anode positioned within the cavity and comprising an active zinc anode component compacted into a rigid static bed of active anode material of tight interparticulate structure, the anode being provided with at least one internal fluid-carrying passage with inlet and outlet means, for circulating cooling fluid therethrough; a dead space volume between inner surfaces of the housing and the plurality of bi-cells; and pressurized oxygen supply means for feeding oxygen to the dead space volume, for consumption in the inter-cathode gas spaces.
摘要:
A method of producing a mercury-free corrosion resistant dendritic zinc alloy powder is provided. According to the method an electrolytic cell is prepared that contains an aqueous alkaline electrolyte with a preselected concentration of dissolved zinc cations and optionally the cations of one or more soluble inhibitor metals. The cell also contains a non-zinc adherent cathode, a first anode, and a second anode. The second anode comprises an inhibitor metal, the salts of which are only sparingly soluble in the alkaline electrolyte. For example, the second anode may comprise a minor anode of indium or bismuth interposed between the first or major anode and the cathode. A first voltage between the first anode and cathode is then applied to establish a desired cathode current density and the deposition of dendritic zinc and optional soluble inhibitor metals on the cathode. Concurrently a second voltage between the second anode and cathode is applied to establish a desired current density at the second anode and the simultaneous co-deposition of a desired concentration of the first inhibitor metal in the dendritic zinc being deposited on the cathode. Intermittently the deposited zinc alloy is removed from the cathode and homogenized into a plurality of dendritic zinc alloy particles. According to the method, mercury-free electrolytic zinc alloy powders with effective corrosion inhibiting concentrations of indium and/or bismuth either alone or in combination with other inhibitor metals can be produced. The corrosion resistant zinc alloy powders have a dendritic morphology that is advantageous for battery applications.
摘要:
An electrochemically prepared, high-performance, zinc powder has an apparent density of about 0.2-2 g/cc and a surface area of about 0.5-6 m.sup.2 /gm and further has at least one corrosion inhibitor metal intrinsically alloyed therein.
摘要:
A process for the preparation of an alkaline-zinc slurry for use in batteries, the slurry comprising an admixture of (a) at least partly oxidized zinc; (b) an aqueous solution of at least one Group Ia metal; and (c) an inorganic or organic inhibitor. The process includes the steps of electrolyzing the admixture in a cell with a corrosion-resistant anode and a non-zinc-adherent cathode such that the zinc deposits on the cathode self-detach or are removed until no more than a preselected amount of zinc remains in the solution, provided that the current density at the cathode is preselected so that the electrowon zinc will have, after homogenizing into particles, a density within the range 0.2-2.0 g/cc and a surface area within the range 0.5-6.0 m.sup.2 /g; removing zinc from the cathode and homogenizing it into particles; and combining the homogenized zinc particles with additional aqueous Group Ia metal hydroxide and optionally with other makeup components selected from the group consisting of water and inhibitor to form a charged slurry.
摘要:
The invention provides a single pass wet fabrication process for preparing a gas diffusion electrode for metal-air batteries and fuel cells comprising:a) preparing an active-layer forming dispersion containing catalyzed carbon black, hydrophilic fluorinated polymer and particulate hydrophobic fluorinated polymer in a liquid medium;b) preparing a blocking-layer forming dispersion containing carbon black and particulate hydrophobic polymeric binders in a liquid medium;c) filtering a first of the layer forming dispersions though filtering means to deposit a first layer of damp solids mass;d) filtering a second of the layer forming dispersions through the first deposited damp solids mass before the drying or sintering of the first deposited damp solids mass in order to deposit a second layer of damp solids mass thereon in such a manner that lower components of the second layer of damp solids mass are intermixed with upper components of the first layer of deposited damp solids mass;e) drying and compressing the composite first and second layers with a conductive metal mesh incorporated therein; andf) heating the dried layers to a temperature above the sintering temperature of the hydrophobic polymer while applying pressure thereto thereby causing the polymeric materials of both layers to sinter and bond with each other and with other components of the layers.
摘要:
A photovoltaic cell for converting a light source into electricity, including: (a) a housing for the photovoltaic cell, including: (i) an at least partially transparent cell wall; (b) at least one electrically-conductive element, disposed at least partially within the photovoltaic cell, for boosting collection of a current generated by the cell; (c) a conductive coating, electrically associated with the electrically-conductive element, and disposed on a surface within the photovoltaic cell; (d) an electrolyte, disposed within the cell wall, the electrolyte containing a redox species, and (e) a current collection element, disposed on a side of the cell wall, wherein the current collection element is electrically connected to the electrically-conductive element, so as to remove the current produced by the cell.
摘要:
The invention provides a process for removing discharged active zinc-containing material from a mechanically rechargeable zinc battery anode, containing the same, the anode being of the type comprising a skeletal frame, including conductive metal and having a portion of a surface area thereof formed as open spaces, and an active zinc anode component compacted into a rigid static bed of active anode material encompassing the skeletal frame, and having two opposite major surfaces, the process comprising introducing the anode between a pair of spaced-apart first and second crusher plates, each of the crusher plates being provided with a plurality of pointed projections of varying heights and a plurality of recesses of varying depths, the crusher plates being aligned with each other to the effect that tips of projections of the first crusher plate substantially mutually occlude with recesses provided on the second crusher plate and tips of projections of the second crusher plate substantially mutually occlude with recesses provided on the first surface; abruptly reducing the space between adjacent crusher plates said anode bed; moving said crusher plates away from said deformed anode bed and then displacing said deformed bed, along at least a first axis, by at least half the distance between adjacent projection tips of at least one of said crusher plates; again abruptly reducing the space between adjacent crusher plates; and repeating the last two steps until the fragmentation of the bed and the dislodgement of the resulting fragmented particles from the skeletal frame are achieved.