摘要:
A chip layout for a high speed semiconductor device is disclosed. The chip layout isolates Rx terminals and Rx ports from Tx terminals and Tx ports. A serial interface is centrally located to reduce latency, power and propagation delays. Stacked die that contain one or more devices with the chip layout are characterized by having improved latency, bandwidth, power consumption, and propagation delays.
摘要:
A chip layout isolates Rx terminals and Rx ports from Tx terminals and Tx ports. Tx terminals are grouped contiguously to each other, and are segregated as a group to a given edge of the package, Rx terminals are similarly grouped and segregated to a different edge of the package. Tx and Rx data channels are disposed in a respective single layer of the package, or both are disposed in a same single layer of the package. Rx ports and Tx ports are located at an approximate center of the package, with Tx and Rx ports disposed on respective opposite sides of an axis bisecting the package. Data signals received by, and transmitted from, the chip flow in a same direction, from a first edge of the package to the center of the package and from the center of the package to a second edge of the package, respectively.
摘要:
A chip layout for a high speed semiconductor device is disclosed. The chip layout isolates Rx terminals and Rx ports from Tx terminals and Tx ports. A serial interface is centrally located to reduce latency, power and propagation delays. Stacked die that contain one or more devices with the chip layout are characterized by having improved latency, bandwidth, power consumption, and propagation delays.
摘要:
A chip layout for a high speed semiconductor device is disclosed. The chip layout isolates Rx terminals and Rx ports from Tx terminals and Tx ports. A serial interface is centrally located to reduce latency, power and propagation delays. Stacked die that contain one or more devices with the chip layout are characterized by having improved latency, bandwidth, power consumption, and propagation delays.
摘要:
A memory device that includes an input interface that receives instructions and input data on a first plurality of serial links. The instructions and input data are deserialized on the memory device, and are provided to a memory controller. The memory controller initiates accesses to a memory core in response to the received instructions. The memory core includes a plurality of memory partitions, which are accessed in a cyclic and overlapping manner. This allows each memory partition to operate at a slower frequency than the serial links, while properly servicing the received instructions. Accesses to the memory device are performed in a synchronous manner, wherein each access exhibits a known fixed latency.
摘要:
A chip layout isolates Rx terminals and Rx ports from Tx terminals and Tx ports. Tx terminals are grouped contiguously to each other, and are segregated as a group to a given edge of the package, Rx terminals are similarly grouped and segregated to a different edge of the package. Tx and Rx data channels are disposed in a respective single layer of the package, or both are disposed in a same single layer of the package. Rx ports and Tx ports are located at an approximate center of the package, with Tx and Rx ports disposed on respective opposite sides of an axis bisecting the package. Data signals received by, and transmitted from, the chip flow in a same direction, from a first edge of the package to the center of the package and from the center of the package to a second edge of the package, respectively.
摘要:
A memory device that includes an input interface that receives instructions and input data on a first plurality of serial links. The instructions and input data are deserialized on the memory device, and are provided to a memory controller. The memory controller initiates accesses to a memory core in response to the received instructions. The memory core includes a plurality of memory partitions, which are accessed in a cyclic and overlapping manner. This allows each memory partition to operate at a slower frequency than the serial links, while properly servicing the received instructions. Accesses to the memory device are performed in a synchronous manner, wherein each access exhibits a known fixed latency.
摘要:
A memory system that reduces the memory cycle time of a memory cell by performing an incomplete write operation. The voltage on a storage node of the memory cell does not reach a full supply voltage during the incomplete write operation. The incomplete write operation is subsequently completed by one or more additional accesses, wherein the voltage on the storage node is pulled to a full supply voltage. The incomplete write operation may be completed by: subsequently writing the same data to the memory cell during an idle cycle; subsequently writing data to other memory cells in the same row as the memory cell; subsequently reading data from the row that includes the memory cell; or refreshing the row that includes the memory cell during an idle cycle. One or more idle cycles may be forced to cause the incomplete write operation to be completed in a timely manner.
摘要:
A multi-bank memory system includes one or more levels of logical memory hierarchy to increase the available random cyclic transaction rate of the memory system. The memory system includes a plurality of multi-bank partitions, each having a corresponding partition interface. Each partition interface accesses the corresponding multi-bank partition at a first frequency. A global interface may access the partition interfaces at a second frequency, which is equal to the first frequency times the number of partition interfaces. Alternately, a plurality of cluster interfaces may access corresponding groups of the partition interfaces, wherein each cluster interface accesses the corresponding group of partition interfaces at a second frequency that is faster than the first frequency. A global interface accesses the cluster interfaces at a third frequency that is greater than the second frequency.
摘要:
A system for testing a number of integrated circuit (IC) devices under test (DUTs) having interface circuitry coupled to a single or multi-channel tester for receiving data values from the tester and providing error information concerning the DUTs. The interface circuitry forwards data values (received from the tester over a single channel) to a number of DUTs in parallel. The circuitry performs comparisons using data values read from the DUTs, and in response generates error values indicative of the comparison. The error values may then be returned to the tester over the same or a different channel.