摘要:
Certain example embodiments relate to the combustion deposition depositing of coatings comprising metal oxide matrices loaded with hollow metal oxide particles. The hollow metal oxide particles may be produced by combusting an emulsion including an aqueous phase and an oil phase, and an optional surfactant. The aqueous and/or oil phase may include a first metal oxide precursor. A second metal oxide precursor may be combusted in addition to the emulsion to produce a dense binder layer, acting as a “glue” to hold the hollow particles together. The matrix and the hollow particles comprising the coating may be of or include the same metal or a different metal. In certain example embodiments, the microstructure of the final deposited coating may resemble the microstructure of coatings produced by wet chemical (e.g., sol gel) techniques.
摘要:
Certain example embodiments relate to coatings comprising nano-particle loaded metal oxide matrices deposited via combustion deposition. The matrix and the nano-particles comprising the coating may be of or include the same metal or a different metal. For example, the coating may include a silicon oxide matrix (e.g., SiO2, or other suitable stoichiometry) having silicon oxide (e.g., silica), titanium oxide (e.g., TiO2, titania, or other suitable stoichiometry), and/or other nano-particles embedded therein. In certain example embodiments, the coating may serve as an anti-reflective (AR) coating and, in certain example embodiments, a percent visible transmission gain of at least about 2.0%, and more preferably between about 3.0-3.5%, may be realized through the growth of a film on a first surface of the substrate. In certain example embodiments, the microstructure of the final deposited coating may resemble the microstructure of coatings produced by wet chemical (e.g., sol gel) techniques.
摘要:
A glass container and related methods of manufacturing and coating glass containers. The container includes an axially closed base at an axial end of the container, a body extending axially from the closed base and being circumferentially closed, and an axially open month at another end of The container opposite of the base. An exterior surface of the container includes an infrared insulative coating including at least one of a metal or a transparent conductive oxide (TCO), wherein the metal is selected from the group consisting of silver, gold, and aluminum, and wherein the TCO is selected from the group consisting of SnO2:Sb, SnO2:F, In2O3:Sn, ZnO:F, ZnO:Al, and ZnO:Ga.
摘要:
A method of applying a coating to a glass container, which includes the steps of coating an exterior surface of the glass container with a thermally-curable coating material containing electrically-conductive nanoparticles, and exposing the coated container to radio frequency radiation such that absorption of the radio frequency radiation by the nanoparticles internally heats and cures the thermally-curable coating material on the exterior surface of the glass container to result in a cured coating on the glass container.
摘要:
A coated glass article, particularly for use as architectural glass, is gold in appearance. The coated glass article includes a glass substrate with an iron oxide coating deposited thereover, the iron oxide coating comprising primarily iron oxide in the form Fe2O3. The coated glass article has an a* value between about −5 and about 10, and a b* value between about 10 and about 40, for both transmitted and reflected light.
摘要翻译:特别用作建筑玻璃的涂层玻璃制品在外观上是金色的。 涂覆的玻璃制品包括其上沉积有氧化铁涂层的玻璃基底,氧化铁涂层主要包含Fe 2 O 3形式的氧化铁。 涂覆的玻璃制品对于透射和反射光具有约-5至约10的a *值和约10至约40的b *值。
摘要:
Certain example embodiments relate to surface-assisted combustion deposition deposited coatings (e.g., metal oxide coatings) formed on glass substrates, and/or methods of making the same. In certain example embodiments, a wet-applied (e.g., sol-gel applied) pre-treatment coating increases a number of nucleation sites on or proximate to the at least one surface of the substrate to be coated, and/or increases a number of binding sites or forms a binding medium on the at least one surface of the substrate to be coated. A combustion deposition deposited growth is formed thereon. The pre-treatment coating may facilitate the combustion deposition depositing of coatings.
摘要:
Certain example embodiments of this invention relate to the combustion deposition depositing of alkaline earth fluoride inclusive coatings on substrates from a metal inclusive organic precursor and a fluorinating reagent, or from a single-source precursor. In certain example embodiments, the fluorinating reagent may be an organic source or an inorganic source. In certain example embodiments, the alkaline earth fluoride inclusive coating may be a magnesium fluoride (e.g., MgF2 or other suitable stoichiometry) inclusive coating, although other Group 2 metals may be used in place of magnesium. In certain example embodiments, the alkaline earth fluoride inclusive coating may be an anti-reflective (AR) coating.
摘要:
A glass container and related methods of manufacturing and coating glass containers. The glass container includes an inorganic-organic hybrid coating over at least a portion of an exterior surface of a glass substrate.
摘要:
A scratch resistant coated article is provided which is also resistant to attacks by at least some fluorine-inclusive etchant(s) for at least a period of time. In certain example embodiments, an anti-etch layer(s) is provided on a glass substrate in order to protect the glass substrate from attacks by fluorine-inclusive etchant(s), a scratch resistant layer of or including DLC is provided over the anti-layer(s), and a seed layer is provided between the anti-layer(s) and the scratch resistant layer so as to facilitate the adhesion of the scratch resistant layer while also helping to protect the anti-layer(s). Optionally, a base layer(s) or underlayer(s) may be under at least the anti-etch layer(s).
摘要:
A CVD process is defined for producing a ruthenium dioxide or ruthenium metal like coating on an article. The article is preferably for use as an architectural glazing, and preferably has low emissivity and solar control properties. The method includes providing a heated glass substrate having a surface on which the coating is to be deposited. A ruthenium containing precursor, an oxygen containing compound, and optionally water vapor, in conjunction with an inert carrier gas, are directed toward and along the surface to be coated and the ruthenium containing precursor and the oxygen containing compound are reacted at or near the surface of the glass substrate to form a ruthenium dioxide coating.